Properties

Label 108000.q.1080.bh2
Order $ 2^{2} \cdot 5^{2} $
Index $ 2^{3} \cdot 3^{3} \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5:F_5$
Order: \(100\)\(\medspace = 2^{2} \cdot 5^{2} \)
Index: \(1080\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5 \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Generators: $b^{3}cd^{27}e^{2}f^{9}, d^{6}, e, b^{6}d^{6}f^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_5^3.C_3^2:D_6$
Order: \(108000\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5^3:\He_3.C_2^3$, of order \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $F_5\wr C_2$, of order \(800\)\(\medspace = 2^{5} \cdot 5^{2} \)
$W$$D_5:F_5$, of order \(200\)\(\medspace = 2^{3} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_3\times C_6$
Normalizer:$C_3^2\times C_2\times D_5:F_5$
Normal closure:$D_5^2:F_5$
Core:$C_1$
Minimal over-subgroups:$C_5^3:C_4$$C_{15}:F_5$$C_{15}:F_5$$C_{15}:F_5$$C_{15}:F_5$$C_{10}:F_5$$D_5:F_5$$D_5:F_5$
Maximal under-subgroups:$C_5:D_5$$F_5$$F_5$

Other information

Number of subgroups in this autjugacy class$30$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$D_5^3.C_3^2:D_6$