Properties

Label 108000.q.16.b1
Order $ 2 \cdot 3^{3} \cdot 5^{3} $
Index $ 2^{4} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_5\times C_{15}^2):C_6$
Order: \(6750\)\(\medspace = 2 \cdot 3^{3} \cdot 5^{3} \)
Index: \(16\)\(\medspace = 2^{4} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $b^{6}, ef^{3}, b^{4}d^{4}e^{4}f^{14}, f^{10}, d^{20}, f^{3}, d^{6}ef^{6}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, monomial (hence solvable), and metabelian.

Ambient group ($G$) information

Description: $D_5^3.C_3^2:D_6$
Order: \(108000\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5^3:\He_3.C_2^3$, of order \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $(C_5\times C_{15}).C_{15}.C_{12}^2.C_2^3$
$W$$C_5^3:(S_3\times C_{12})$, of order \(9000\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5^{3} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$C_{15}^2:(S_3\times F_5)$
Normal closure:$D_5^3:\He_3$
Core:$C_3^2\times C_5^2:D_5$
Minimal over-subgroups:$D_5^3:\He_3$$(C_5\times C_{15}^2):D_6$$(C_5\times C_{15}^2):C_{12}$$C_{15}^2:C_{15}:C_4$
Maximal under-subgroups:$C_{15}^2:C_{15}$$C_3^2\times C_5^2:D_5$$C_3\times C_5^3:C_6$$C_3\times C_5^3:C_6$$C_{15}^2:C_6$$D_5\times \He_3$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$-2$
Projective image$D_5^3.C_3^2:D_6$