Properties

Label 108000.q.8.b1
Order $ 2^{2} \cdot 3^{3} \cdot 5^{3} $
Index $ 2^{3} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$(C_5\times C_{15}^2):D_6$
Order: \(13500\)\(\medspace = 2^{2} \cdot 3^{3} \cdot 5^{3} \)
Index: \(8\)\(\medspace = 2^{3} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $ad^{25}e^{2}f^{9}, f^{10}, d^{6}f^{3}, d^{20}, f^{3}, ef^{3}, b^{6}, b^{4}d^{16}ef^{11}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $D_5^3.C_3^2:D_6$
Order: \(108000\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5^3:\He_3.C_2^3$, of order \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $F_5\times C_5^2.\He_3.C_4.C_2^2$
$W$$C_{15}^2:(S_3\times F_5)$, of order \(27000\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{3} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_{15}^2:(S_3\times F_5)$
Normal closure:$C_3^2:D_5\wr S_3$
Core:$C_3^2\times C_5^2:D_5$
Minimal over-subgroups:$C_3^2:D_5\wr S_3$$C_{15}^2:(S_3\times F_5)$
Maximal under-subgroups:$C_5\times C_{15}^2:S_3$$(C_5\times C_{15}^2):C_6$$C_{15}^2:D_{15}$$C_3\times C_5^3:D_6$$(C_5^2\times C_{15}):D_6$$C_{15}^2:D_6$$\He_3:D_{10}$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$D_5^3.C_3^2:D_6$