Properties

Label 108000.q.4.a1
Order $ 2^{3} \cdot 3^{3} \cdot 5^{3} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_5^3:\He_3$
Order: \(27000\)\(\medspace = 2^{3} \cdot 3^{3} \cdot 5^{3} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $f^{3}, ef^{12}, d^{20}, d^{15}ef^{6}, f^{10}, d^{6}f^{6}, b^{6}, b^{4}d^{4}e^{4}f^{14}, cd^{27}e^{2}f^{6}$ Copy content Toggle raw display
Derived length: $3$

The subgroup is characteristic (hence normal), nonabelian, and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $D_5^3.C_3^2:D_6$
Order: \(108000\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5^3:\He_3.C_2^3$, of order \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $C_5^3.C_6^2.(C_4\times S_3^2)$
$W$$C_5^3:(C_{12}\times S_4)$, of order \(36000\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5^{3} \)

Related subgroups

Centralizer:$C_3$
Normalizer:$D_5^3.C_3^2:D_6$
Minimal over-subgroups:$C_3^2:D_5\wr S_3$$D_5^3.(C_2\times \He_3)$$D_5^3.C_3^2:C_6$
Maximal under-subgroups:$(C_5\times C_{15}^2):A_4$$C_3^2\times C_5^3:C_2^3$$D_5^3:C_3^2$$D_5^3:C_3^2$$(C_5\times C_{15}^2):C_6$$C_6^2:C_6$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$2$
Projective image$D_5^3.C_3^2:D_6$