Properties

Label 108000.b.75.a1
Order $ 2^{5} \cdot 3^{2} \cdot 5 $
Index $ 3 \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2:(C_2\times F_5)$
Order: \(1440\)\(\medspace = 2^{5} \cdot 3^{2} \cdot 5 \)
Index: \(75\)\(\medspace = 3 \cdot 5^{2} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $a^{3}e^{4}f, d^{15}e^{4}, c^{2}d^{20}, c^{3}d^{27}ef^{2}, d^{20}, d^{6}, b^{3}e^{3}f, a^{2}c^{4}d^{10}ef^{4}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $D_5^3.C_3^2:D_6$
Order: \(108000\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5^3:\He_3.C_2^3$, of order \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $D_6^2.C_2^3\times F_5$
$W$$D_{10}.S_3^2$, of order \(720\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_2$
Normalizer:$C_6^2:(C_2\times F_5)$
Normal closure:$D_5^3.C_3^2:D_6$
Core:$C_3:S_3$
Minimal over-subgroups:$C_5^3.C_6^2.C_2^3$
Maximal under-subgroups:$D_{10}.S_3^2$$D_{10}.S_3^2$$C_6^2:D_{10}$$D_{10}.S_3^2$$D_{10}.S_3^2$$C_6^2:F_5$$C_6^2:F_5$$D_{10}:C_4\times S_3$$D_{10}:C_4\times S_3$$C_2^3.S_3^2$

Other information

Number of subgroups in this autjugacy class$75$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$D_5^3.C_3^2:D_6$