Properties

Label 108000.b.1.a1
Order $ 2^{5} \cdot 3^{3} \cdot 5^{3} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_5^3.C_3^2:D_6$
Order: \(108000\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{3} \)
Index: $1$
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Generators: $d^{6}f^{2}, f, d^{15}ef^{3}, b^{3}, c^{2}d^{20}, b^{2}cd^{7}ef, c^{3}d^{21}ef^{3}, a^{3}e^{4}f, a^{2}c^{4}d^{10}ef^{4}, d^{20}, ef^{2}$ Copy content Toggle raw display
Derived length: $4$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, and a Hall subgroup. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $D_5^3.C_3^2:D_6$
Order: \(108000\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5^3:\He_3.C_2^3$, of order \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $D_5^3:\He_3.C_2^3$, of order \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
$W$$D_5^3.C_3^2:D_6$, of order \(108000\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{3} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$D_5^3.C_3^2:D_6$
Complements:$C_1$
Maximal under-subgroups:$D_5^3:C_3^2:S_3$$D_5^3.C_3^2:C_6$$D_5^3.C_3^2:S_3$$D_5^3.S_3^2$$C_5^3.C_6^2.C_2^3$$C_{15}^2:C_{30}:C_4$$C_6.(S_3\times S_4)$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$1$
Projective image$D_5^3.C_3^2:D_6$