-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'ambient': '108000.b', 'ambient_counter': 2, 'ambient_order': 108000, 'ambient_tex': 'D_5^3.C_3^2:D_6', 'central': False, 'central_factor': False, 'centralizer_order': 1, 'characteristic': True, 'core_order': 108000, 'counter': 1, 'cyclic': False, 'direct': True, 'hall': 30, 'label': '108000.b.1.a1', 'maximal': False, 'maximal_normal': False, 'metabelian': False, 'metacyclic': False, 'minimal': False, 'minimal_normal': False, 'nilpotent': False, 'normal': True, 'old_label': '1.a1', 'outer_equivalence': True, 'perfect': False, 'proper': False, 'quotient': '1.1', 'quotient_Agroup': True, 'quotient_abelian': True, 'quotient_cyclic': True, 'quotient_hash': 1, 'quotient_metabelian': True, 'quotient_nilpotent': True, 'quotient_order': 1, 'quotient_simple': False, 'quotient_solvable': True, 'quotient_supersolvable': True, 'quotient_tex': 'C_1', 'simple': False, 'solvable': True, 'special_labels': ['R', 'L0', 'D0', 'C0', 'R', 'L0', 'D0', 'C0'], 'split': True, 'standard_generators': False, 'stem': False, 'subgroup': '108000.b', 'subgroup_hash': 2628370552740919509, 'subgroup_order': 108000, 'subgroup_tex': 'D_5^3.C_3^2:D_6', 'supersolvable': False, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '108000.b', 'aut_centralizer_order': None, 'aut_label': '1.a1', 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': '108000.a1', 'complements': ['108000.a1'], 'conjugacy_class_count': 1, 'contained_in': [], 'contains': ['2.a1', '2.b1', '2.c1', '3.a1', '3.b1', '4.d1', '125.a1'], 'core': '1.a1', 'coset_action_label': None, 'count': 1, 'diagramx': None, 'generators': [44064, 21600, 71280, 12, 2928, 26960, 72216, 38883, 92258, 2880, 47520], 'label': '108000.b.1.a1', 'mobius_quo': 0, 'mobius_sub': 1, 'normal_closure': '1.a1', 'normal_contained_in': [], 'normal_contains': ['2.a1', '2.b1', '2.c1'], 'normalizer': '1.a1', 'old_label': '1.a1', 'projective_image': '108000.b', 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '1.a1', 'subgroup_fusion': None, 'weyl_group': '108000.b'}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '8.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 4, 'aut_exponent': 60, 'aut_gen_orders': [12, 6, 12, 30, 10, 5], 'aut_gens': [[1, 4, 24, 144, 4320, 21600], [82225, 94796, 49128, 32688, 12960, 51840], [60497, 22324, 29520, 25320, 89856, 864], [32113, 29500, 27672, 61488, 34560, 43200], [22897, 66940, 53592, 60624, 82080, 21600], [63073, 67036, 80376, 80496, 4320, 21600], [2593, 66532, 3480, 144, 4320, 21600]], 'aut_group': '216000.d', 'aut_hash': 4125830444204071041, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 216000, 'aut_permdeg': 459, 'aut_perms': [13575077554653213364281886789549188494627961956987016739184819526563173248582476198854236346343635979648838498971498219675402541272058747786638396995841732867338330634643861500558200571292476901914930216034119903150880898003473803745976821968289975023817566845444128564485635109240047493990662976476931026242309297105491828895576480844899680443968540676867203893662869780844557886798277348409789929860551275272310522674045753641550459750767059510210885468840243852717278629282362005242487454971775264178294422808533081830428224423882301345908887462140119736584464227905415411411491220026941764939345082685276305512978887729267359375020914184954583134456153003618608446203440106426901140842316146157723142248213892518972147015883643016371047193077218528932721035993443466896378713182241964198653688419377778745165991648371308132192143558424431414785767020822346574573088512256658237433757859773453774453281282069622922079932350669076800306916294590237777241421035732324981738898885646639263590404405184435792959039796665855681, 341609517142834340096443097241089037390720298750967325183311669123547844945900542931710604296742888972801089583639330955519156070647340683859515834903687671245015198311448720159391127986626207279270970898987323549531112718170893559978084887864741920579707779770111452219385648730232806326446734847172196201792775516728178064625266488738846604969556014232503895980918713864980982504106207161974531948532174043302360444100749822610209352756706028647763222558253078770755049423164951586438935857965441628475723111560715156744760502661777588971227053622273463522188842417682137551997854611748285204881458557559996683873729743786505203472017348781587509770568521889451886439412460858992003682393922541626646809063757419253776075663838471801220274715452161210107748207267269428087037803110128563943526910134385035500431388109080927875056441731658014993555868820596897600762437438049935269896950810385722934720824282621933505493793888373465212818268305073920605262056236703001911566349228724629712283679691872884224641086554860959, 4449265934065720341039808692317727994412648018896548763575218911370172078825831583279128708433663814286903477899444604427228514891657113942765169537544880275924999187420159684371447060721002231812422102066756440053748315459222079545065249713150794245221029978469914279259783486674374120306277642428834855637707766669884234835030107466646507945930913117351993967837700709999644923528211176861578094906670237445314649566750420631198603921820017147980669462281534858683348792640767834087188274359832406678728073849022793405692854671693161286065076315140530032434747065281027660284749286547508328006850554410499956482984959596424800793601816321298174144524989670393591465617358109021646095579044107531578163127810041913478461029096440314005702978429028827320575679620610682633128554255920644527724376210860599301617966184059913097831714742670705694092482563980359051549234894828428820041137318058367321623888253364817324622552396338092713935876044589893291132783510209736438095736248643412820183868070079280538278460116292448109, 1338899263089657076013192029701380840654936641053105458702488829558857921486290140002125574280475050119764253951951491457117126918730217032539428700957605152655937250590931103584873666667810581304969617278281208105919440252866093648836484900857695583580526909938684005833632981701503664360038176105214296857980664176496921207407013623155646193298202607288036342749984602549580453668975426294616146684300976553497623750631825090936214092690975000592259235814835284589839541057959042535990561831555277221978805689560257415733143505973667594622710794309811412451703471690581056550706440939168679469123626948562125014500746269463607669105856969275971184527990173148074459829538306202848986203715856874887974130551538774824069527617249073539010993537082794298844062558224264494610426675594422285149893559256846766848887035978728257515490571650742058165900415987934606866152024964761441317616198555443231886683209980821648189612767584361958830455219853899408456036038516600193693388866124437616832604505303889872538066728008264080, 9824439164185932672237466371279322789966563543713265383716782715253696920353279546699339285825555919909281672957699446558389322174682465053502504460762573294781574312190593863502024004327392666985886196240315543335432304665228643231180121851049442961598469281806858514623667716890336868683555058538712173740394310422747968885164065060525770039943339712644451877393522009780533107698397443872131794753357553399362179082216780620751382003544301336594141819536052657939928814375436034259804132183407605400383069501063348361270273748907792087322249369925025664064154081310457523375117274863841961155462943572003754701047270094132917348907065025730932263498930435222302219065231824845699547274681913791753096714760018546086076067791235814658306294983748768689630116767447001218159503432995020222810678274153367263350215477852578919157601301460256239197106008251050157943346799886648856812701295712741119247050480801598088747369872710198444097621190016286616547950292374723420071983704701600790354410220173184239350639783516603439, 9728942806917273098665893117087913832075527986673090310192026145732664435997714754133976461981461768710765612455139169600843487843237364079935964937816072163983684991243912086307812415939886654829880533078630015898788598335356245338194248043399454017102761231324750118277504719098055829182322630795049201629801558898386294623622975108925719321191751198847682190970523541561712008164008974716459051259657450346462675618869242207200335943736124729455074797158595988711797271831769434299307202221306012040252017714239462263912578000317903553007179225500218927276188536100519872474555412983494009570842497998161893957583126957769525379621273863500809392600585103803961535001590715594423942040731196776193319827900162639440193528087580343793557532491816231019961000495737633518679775461349032925329233544473878065839944345993922942113888649898134672619621723193269042150676970625758714465395245352463430975388147138821779775168774596856461366799453694566805565691625375286057025926730278078773936405333166173166712514398295798185], 'aut_phi_ratio': 7.5, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 9, 1, 1], [2, 15, 1, 1], [2, 75, 1, 1], [2, 125, 1, 1], [2, 135, 1, 1], [2, 675, 1, 1], [2, 1125, 1, 1], [3, 2, 1, 1], [3, 6, 1, 1], [3, 600, 1, 1], [3, 1200, 1, 1], [4, 450, 1, 4], [4, 2250, 1, 4], [5, 12, 1, 1], [5, 12, 2, 1], [5, 16, 1, 1], [5, 24, 1, 1], [5, 48, 1, 1], [6, 30, 1, 2], [6, 60, 1, 1], [6, 150, 1, 2], [6, 250, 1, 1], [6, 300, 1, 1], [6, 750, 1, 1], [6, 1800, 1, 1], [6, 3000, 1, 1], [6, 6000, 1, 1], [6, 9000, 1, 1], [10, 60, 2, 2], [10, 108, 1, 1], [10, 108, 2, 1], [10, 120, 1, 1], [10, 144, 1, 1], [10, 216, 1, 1], [10, 300, 1, 1], [10, 432, 1, 1], [10, 540, 2, 2], [10, 1080, 1, 1], [10, 2700, 1, 1], [12, 900, 1, 4], [12, 4500, 1, 4], [15, 24, 1, 2], [15, 24, 2, 3], [15, 32, 1, 1], [15, 48, 1, 2], [15, 48, 2, 2], [15, 96, 1, 3], [15, 96, 2, 1], [15, 1200, 2, 1], [15, 2400, 2, 1], [20, 900, 2, 4], [30, 120, 2, 6], [30, 240, 1, 2], [30, 240, 2, 2], [30, 600, 1, 2], [30, 600, 2, 1], [30, 3600, 2, 1], [60, 1800, 2, 4]], 'aut_supersolvable': False, 'aut_tex': 'D_5^3:\\He_3.C_2^3', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 1, 'autcent_group': '1.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 1, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_1', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 60, 'autcentquo_group': '216000.d', 'autcentquo_hash': 4125830444204071041, 'autcentquo_nilpotent': False, 'autcentquo_order': 216000, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'D_5^3:\\He_3.C_2^3', 'cc_stats': [[1, 1, 1], [2, 9, 1], [2, 15, 1], [2, 75, 1], [2, 125, 1], [2, 135, 1], [2, 675, 1], [2, 1125, 1], [3, 2, 1], [3, 6, 1], [3, 600, 1], [3, 1200, 1], [4, 450, 4], [4, 2250, 4], [5, 12, 3], [5, 16, 1], [5, 24, 1], [5, 48, 1], [6, 30, 2], [6, 60, 1], [6, 150, 2], [6, 250, 1], [6, 300, 1], [6, 750, 1], [6, 1800, 1], [6, 3000, 1], [6, 6000, 1], [6, 9000, 1], [10, 60, 4], [10, 108, 3], [10, 120, 1], [10, 144, 1], [10, 216, 1], [10, 300, 1], [10, 432, 1], [10, 540, 4], [10, 1080, 1], [10, 2700, 1], [12, 900, 4], [12, 4500, 4], [15, 24, 8], [15, 32, 1], [15, 48, 6], [15, 96, 5], [15, 1200, 2], [15, 2400, 2], [20, 900, 8], [30, 120, 12], [30, 240, 6], [30, 600, 4], [30, 3600, 2], [60, 1800, 8]], 'center_label': '1.1', 'center_order': 1, 'central_product': False, 'central_quotient': '108000.b', 'commutator_count': 1, 'commutator_label': '13500.j', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '3.1', '3.1', '3.1', '5.1', '5.1', '5.1'], 'composition_length': 11, 'conjugacy_classes_known': True, 'counter': 2, 'cyclic': False, 'derived_length': 4, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 9, 1, 1], [2, 15, 1, 1], [2, 75, 1, 1], [2, 125, 1, 1], [2, 135, 1, 1], [2, 675, 1, 1], [2, 1125, 1, 1], [3, 2, 1, 1], [3, 6, 1, 1], [3, 600, 1, 1], [3, 1200, 1, 1], [4, 450, 2, 2], [4, 2250, 2, 2], [5, 12, 1, 1], [5, 12, 2, 1], [5, 16, 1, 1], [5, 24, 1, 1], [5, 48, 1, 1], [6, 30, 1, 2], [6, 60, 1, 1], [6, 150, 1, 2], [6, 250, 1, 1], [6, 300, 1, 1], [6, 750, 1, 1], [6, 1800, 1, 1], [6, 3000, 1, 1], [6, 6000, 1, 1], [6, 9000, 1, 1], [10, 60, 2, 2], [10, 108, 1, 1], [10, 108, 2, 1], [10, 120, 1, 1], [10, 144, 1, 1], [10, 216, 1, 1], [10, 300, 1, 1], [10, 432, 1, 1], [10, 540, 2, 2], [10, 1080, 1, 1], [10, 2700, 1, 1], [12, 900, 2, 2], [12, 4500, 2, 2], [15, 24, 1, 2], [15, 24, 2, 3], [15, 32, 1, 1], [15, 48, 1, 2], [15, 48, 2, 2], [15, 96, 1, 3], [15, 96, 2, 1], [15, 1200, 2, 1], [15, 2400, 2, 1], [20, 900, 4, 2], [30, 120, 2, 6], [30, 240, 1, 2], [30, 240, 2, 2], [30, 600, 1, 2], [30, 600, 2, 1], [30, 3600, 2, 1], [60, 1800, 4, 2]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 6696, 'exponent': 60, 'exponents_of_order': [5, 3, 3], 'factors_of_aut_order': [2, 3, 5], 'factors_of_order': [2, 3, 5], 'faithful_reps': [[24, 0, 4], [24, 1, 16], [48, 1, 10], [96, 1, 4]], 'familial': False, 'frattini_label': '3.1', 'frattini_quotient': '36000.b', 'hash': 2628370552740919509, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 60, 'inner_gen_orders': [60, 6, 6, 30, 5, 5], 'inner_gens': [[1, 59492, 7656, 49968, 34560, 51840], [102705, 4, 8520, 73464, 107136, 25920], [5329, 4468, 24, 54576, 82080, 21600], [84097, 99628, 79512, 144, 17280, 86400], [99361, 31108, 51864, 8784, 4320, 21600], [99361, 17284, 24, 43344, 4320, 21600]], 'inner_hash': 2628370552740919509, 'inner_nilpotent': False, 'inner_order': 108000, 'inner_split': True, 'inner_tex': 'D_5^3.C_3^2:D_6', 'inner_used': [1, 2], 'irrC_degree': 24, 'irrQ_degree': 24, 'irrQ_dim': 24, 'irrR_degree': 24, 'irrep_stats': [[1, 8], [2, 8], [3, 8], [4, 2], [6, 12], [12, 26], [16, 6], [24, 36], [32, 3], [48, 14], [96, 5]], 'label': '108000.b', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': None, 'name': 'D5^3.C3^2:D6', 'ngens': 11, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 96, 'number_characteristic_subgroups': 33, 'number_conjugacy_classes': 128, 'number_divisions': 84, 'number_normal_subgroups': 33, 'number_subgroup_autclasses': 1890, 'number_subgroup_classes': 1890, 'number_subgroups': 514680, 'old_label': None, 'order': 108000, 'order_factorization_type': 321, 'order_stats': [[1, 1], [2, 2159], [3, 1808], [4, 10800], [5, 124], [6, 21520], [10, 7716], [12, 21600], [15, 8192], [20, 7200], [30, 12480], [60, 14400]], 'outer_abelian': True, 'outer_cyclic': True, 'outer_equivalence': True, 'outer_exponent': 2, 'outer_gen_orders': [2], 'outer_gen_pows': [21266], 'outer_gens': [[39169, 32596, 53592, 45072, 12960, 64800]], 'outer_group': '2.1', 'outer_hash': 1, 'outer_nilpotent': True, 'outer_order': 2, 'outer_permdeg': 2, 'outer_perms': [1], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2', 'pc_rank': 6, 'perfect': False, 'permutation_degree': 24, 'pgroup': 0, 'primary_abelian_invariants': [2, 4], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 8], [3, 4], [4, 3], [6, 8], [12, 9], [16, 2], [24, 14], [32, 3], [48, 18], [64, 1], [96, 9], [192, 1]], 'representations': {'PC': {'code': '1008558753212225743673803130054926491617560988528588920181225151186974751577803730642033227721856379200180120859619223645038986172733357047246506002806261943757391498665657168457458362342551016280175657627641358386484303783543935', 'gens': [1, 3, 5, 7, 10, 11], 'pres': [11, 2, 2, 2, 3, 2, 3, 2, 3, 5, 5, 5, 22, 634668, 1963238, 601603, 90, 3980771, 1617454, 421084, 2234115, 117176, 64387, 158, 98213, 24579, 11918, 3847542, 2267513, 1414210, 314892, 175148, 226, 50695, 50706, 951485, 586648, 4275, 348, 171080, 171091, 534630, 320801, 14308, 3801609, 2946271, 1199922, 376253, 13275, 6272650, 784112, 52315, 72676]}, 'Perm': {'d': 24, 'gens': [1129129429352468595881, 28209890841556454636703]}}, 'schur_multiplier': [2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 4], 'solvability_type': 17, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'D_5^3.C_3^2:D_6', 'transitive_degree': 45, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '8.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 4, 'aut_exponent': 60, 'aut_gen_orders': [12, 6, 12, 30, 10, 5], 'aut_gens': [[1, 4, 24, 144, 4320, 21600], [82225, 94796, 49128, 32688, 12960, 51840], [60497, 22324, 29520, 25320, 89856, 864], [32113, 29500, 27672, 61488, 34560, 43200], [22897, 66940, 53592, 60624, 82080, 21600], [63073, 67036, 80376, 80496, 4320, 21600], [2593, 66532, 3480, 144, 4320, 21600]], 'aut_group': '216000.d', 'aut_hash': 4125830444204071041, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 216000, 'aut_permdeg': 459, 'aut_perms': [13575077554653213364281886789549188494627961956987016739184819526563173248582476198854236346343635979648838498971498219675402541272058747786638396995841732867338330634643861500558200571292476901914930216034119903150880898003473803745976821968289975023817566845444128564485635109240047493990662976476931026242309297105491828895576480844899680443968540676867203893662869780844557886798277348409789929860551275272310522674045753641550459750767059510210885468840243852717278629282362005242487454971775264178294422808533081830428224423882301345908887462140119736584464227905415411411491220026941764939345082685276305512978887729267359375020914184954583134456153003618608446203440106426901140842316146157723142248213892518972147015883643016371047193077218528932721035993443466896378713182241964198653688419377778745165991648371308132192143558424431414785767020822346574573088512256658237433757859773453774453281282069622922079932350669076800306916294590237777241421035732324981738898885646639263590404405184435792959039796665855681, 341609517142834340096443097241089037390720298750967325183311669123547844945900542931710604296742888972801089583639330955519156070647340683859515834903687671245015198311448720159391127986626207279270970898987323549531112718170893559978084887864741920579707779770111452219385648730232806326446734847172196201792775516728178064625266488738846604969556014232503895980918713864980982504106207161974531948532174043302360444100749822610209352756706028647763222558253078770755049423164951586438935857965441628475723111560715156744760502661777588971227053622273463522188842417682137551997854611748285204881458557559996683873729743786505203472017348781587509770568521889451886439412460858992003682393922541626646809063757419253776075663838471801220274715452161210107748207267269428087037803110128563943526910134385035500431388109080927875056441731658014993555868820596897600762437438049935269896950810385722934720824282621933505493793888373465212818268305073920605262056236703001911566349228724629712283679691872884224641086554860959, 4449265934065720341039808692317727994412648018896548763575218911370172078825831583279128708433663814286903477899444604427228514891657113942765169537544880275924999187420159684371447060721002231812422102066756440053748315459222079545065249713150794245221029978469914279259783486674374120306277642428834855637707766669884234835030107466646507945930913117351993967837700709999644923528211176861578094906670237445314649566750420631198603921820017147980669462281534858683348792640767834087188274359832406678728073849022793405692854671693161286065076315140530032434747065281027660284749286547508328006850554410499956482984959596424800793601816321298174144524989670393591465617358109021646095579044107531578163127810041913478461029096440314005702978429028827320575679620610682633128554255920644527724376210860599301617966184059913097831714742670705694092482563980359051549234894828428820041137318058367321623888253364817324622552396338092713935876044589893291132783510209736438095736248643412820183868070079280538278460116292448109, 1338899263089657076013192029701380840654936641053105458702488829558857921486290140002125574280475050119764253951951491457117126918730217032539428700957605152655937250590931103584873666667810581304969617278281208105919440252866093648836484900857695583580526909938684005833632981701503664360038176105214296857980664176496921207407013623155646193298202607288036342749984602549580453668975426294616146684300976553497623750631825090936214092690975000592259235814835284589839541057959042535990561831555277221978805689560257415733143505973667594622710794309811412451703471690581056550706440939168679469123626948562125014500746269463607669105856969275971184527990173148074459829538306202848986203715856874887974130551538774824069527617249073539010993537082794298844062558224264494610426675594422285149893559256846766848887035978728257515490571650742058165900415987934606866152024964761441317616198555443231886683209980821648189612767584361958830455219853899408456036038516600193693388866124437616832604505303889872538066728008264080, 9824439164185932672237466371279322789966563543713265383716782715253696920353279546699339285825555919909281672957699446558389322174682465053502504460762573294781574312190593863502024004327392666985886196240315543335432304665228643231180121851049442961598469281806858514623667716890336868683555058538712173740394310422747968885164065060525770039943339712644451877393522009780533107698397443872131794753357553399362179082216780620751382003544301336594141819536052657939928814375436034259804132183407605400383069501063348361270273748907792087322249369925025664064154081310457523375117274863841961155462943572003754701047270094132917348907065025730932263498930435222302219065231824845699547274681913791753096714760018546086076067791235814658306294983748768689630116767447001218159503432995020222810678274153367263350215477852578919157601301460256239197106008251050157943346799886648856812701295712741119247050480801598088747369872710198444097621190016286616547950292374723420071983704701600790354410220173184239350639783516603439, 9728942806917273098665893117087913832075527986673090310192026145732664435997714754133976461981461768710765612455139169600843487843237364079935964937816072163983684991243912086307812415939886654829880533078630015898788598335356245338194248043399454017102761231324750118277504719098055829182322630795049201629801558898386294623622975108925719321191751198847682190970523541561712008164008974716459051259657450346462675618869242207200335943736124729455074797158595988711797271831769434299307202221306012040252017714239462263912578000317903553007179225500218927276188536100519872474555412983494009570842497998161893957583126957769525379621273863500809392600585103803961535001590715594423942040731196776193319827900162639440193528087580343793557532491816231019961000495737633518679775461349032925329233544473878065839944345993922942113888649898134672619621723193269042150676970625758714465395245352463430975388147138821779775168774596856461366799453694566805565691625375286057025926730278078773936405333166173166712514398295798185], 'aut_phi_ratio': 7.5, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 9, 1, 1], [2, 15, 1, 1], [2, 75, 1, 1], [2, 125, 1, 1], [2, 135, 1, 1], [2, 675, 1, 1], [2, 1125, 1, 1], [3, 2, 1, 1], [3, 6, 1, 1], [3, 600, 1, 1], [3, 1200, 1, 1], [4, 450, 1, 4], [4, 2250, 1, 4], [5, 12, 1, 1], [5, 12, 2, 1], [5, 16, 1, 1], [5, 24, 1, 1], [5, 48, 1, 1], [6, 30, 1, 2], [6, 60, 1, 1], [6, 150, 1, 2], [6, 250, 1, 1], [6, 300, 1, 1], [6, 750, 1, 1], [6, 1800, 1, 1], [6, 3000, 1, 1], [6, 6000, 1, 1], [6, 9000, 1, 1], [10, 60, 2, 2], [10, 108, 1, 1], [10, 108, 2, 1], [10, 120, 1, 1], [10, 144, 1, 1], [10, 216, 1, 1], [10, 300, 1, 1], [10, 432, 1, 1], [10, 540, 2, 2], [10, 1080, 1, 1], [10, 2700, 1, 1], [12, 900, 1, 4], [12, 4500, 1, 4], [15, 24, 1, 2], [15, 24, 2, 3], [15, 32, 1, 1], [15, 48, 1, 2], [15, 48, 2, 2], [15, 96, 1, 3], [15, 96, 2, 1], [15, 1200, 2, 1], [15, 2400, 2, 1], [20, 900, 2, 4], [30, 120, 2, 6], [30, 240, 1, 2], [30, 240, 2, 2], [30, 600, 1, 2], [30, 600, 2, 1], [30, 3600, 2, 1], [60, 1800, 2, 4]], 'aut_supersolvable': False, 'aut_tex': 'D_5^3:\\He_3.C_2^3', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 1, 'autcent_group': '1.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 1, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_1', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 60, 'autcentquo_group': '216000.d', 'autcentquo_hash': 4125830444204071041, 'autcentquo_nilpotent': False, 'autcentquo_order': 216000, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'D_5^3:\\He_3.C_2^3', 'cc_stats': [[1, 1, 1], [2, 9, 1], [2, 15, 1], [2, 75, 1], [2, 125, 1], [2, 135, 1], [2, 675, 1], [2, 1125, 1], [3, 2, 1], [3, 6, 1], [3, 600, 1], [3, 1200, 1], [4, 450, 4], [4, 2250, 4], [5, 12, 3], [5, 16, 1], [5, 24, 1], [5, 48, 1], [6, 30, 2], [6, 60, 1], [6, 150, 2], [6, 250, 1], [6, 300, 1], [6, 750, 1], [6, 1800, 1], [6, 3000, 1], [6, 6000, 1], [6, 9000, 1], [10, 60, 4], [10, 108, 3], [10, 120, 1], [10, 144, 1], [10, 216, 1], [10, 300, 1], [10, 432, 1], [10, 540, 4], [10, 1080, 1], [10, 2700, 1], [12, 900, 4], [12, 4500, 4], [15, 24, 8], [15, 32, 1], [15, 48, 6], [15, 96, 5], [15, 1200, 2], [15, 2400, 2], [20, 900, 8], [30, 120, 12], [30, 240, 6], [30, 600, 4], [30, 3600, 2], [60, 1800, 8]], 'center_label': '1.1', 'center_order': 1, 'central_product': False, 'central_quotient': '108000.b', 'commutator_count': 1, 'commutator_label': '13500.j', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '3.1', '3.1', '3.1', '5.1', '5.1', '5.1'], 'composition_length': 11, 'conjugacy_classes_known': True, 'counter': 2, 'cyclic': False, 'derived_length': 4, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 9, 1, 1], [2, 15, 1, 1], [2, 75, 1, 1], [2, 125, 1, 1], [2, 135, 1, 1], [2, 675, 1, 1], [2, 1125, 1, 1], [3, 2, 1, 1], [3, 6, 1, 1], [3, 600, 1, 1], [3, 1200, 1, 1], [4, 450, 2, 2], [4, 2250, 2, 2], [5, 12, 1, 1], [5, 12, 2, 1], [5, 16, 1, 1], [5, 24, 1, 1], [5, 48, 1, 1], [6, 30, 1, 2], [6, 60, 1, 1], [6, 150, 1, 2], [6, 250, 1, 1], [6, 300, 1, 1], [6, 750, 1, 1], [6, 1800, 1, 1], [6, 3000, 1, 1], [6, 6000, 1, 1], [6, 9000, 1, 1], [10, 60, 2, 2], [10, 108, 1, 1], [10, 108, 2, 1], [10, 120, 1, 1], [10, 144, 1, 1], [10, 216, 1, 1], [10, 300, 1, 1], [10, 432, 1, 1], [10, 540, 2, 2], [10, 1080, 1, 1], [10, 2700, 1, 1], [12, 900, 2, 2], [12, 4500, 2, 2], [15, 24, 1, 2], [15, 24, 2, 3], [15, 32, 1, 1], [15, 48, 1, 2], [15, 48, 2, 2], [15, 96, 1, 3], [15, 96, 2, 1], [15, 1200, 2, 1], [15, 2400, 2, 1], [20, 900, 4, 2], [30, 120, 2, 6], [30, 240, 1, 2], [30, 240, 2, 2], [30, 600, 1, 2], [30, 600, 2, 1], [30, 3600, 2, 1], [60, 1800, 4, 2]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 6696, 'exponent': 60, 'exponents_of_order': [5, 3, 3], 'factors_of_aut_order': [2, 3, 5], 'factors_of_order': [2, 3, 5], 'faithful_reps': [[24, 0, 4], [24, 1, 16], [48, 1, 10], [96, 1, 4]], 'familial': False, 'frattini_label': '3.1', 'frattini_quotient': '36000.b', 'hash': 2628370552740919509, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 60, 'inner_gen_orders': [60, 6, 6, 30, 5, 5], 'inner_gens': [[1, 59492, 7656, 49968, 34560, 51840], [102705, 4, 8520, 73464, 107136, 25920], [5329, 4468, 24, 54576, 82080, 21600], [84097, 99628, 79512, 144, 17280, 86400], [99361, 31108, 51864, 8784, 4320, 21600], [99361, 17284, 24, 43344, 4320, 21600]], 'inner_hash': 2628370552740919509, 'inner_nilpotent': False, 'inner_order': 108000, 'inner_split': True, 'inner_tex': 'D_5^3.C_3^2:D_6', 'inner_used': [1, 2], 'irrC_degree': 24, 'irrQ_degree': 24, 'irrQ_dim': 24, 'irrR_degree': 24, 'irrep_stats': [[1, 8], [2, 8], [3, 8], [4, 2], [6, 12], [12, 26], [16, 6], [24, 36], [32, 3], [48, 14], [96, 5]], 'label': '108000.b', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': None, 'name': 'D5^3.C3^2:D6', 'ngens': 11, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 96, 'number_characteristic_subgroups': 33, 'number_conjugacy_classes': 128, 'number_divisions': 84, 'number_normal_subgroups': 33, 'number_subgroup_autclasses': 1890, 'number_subgroup_classes': 1890, 'number_subgroups': 514680, 'old_label': None, 'order': 108000, 'order_factorization_type': 321, 'order_stats': [[1, 1], [2, 2159], [3, 1808], [4, 10800], [5, 124], [6, 21520], [10, 7716], [12, 21600], [15, 8192], [20, 7200], [30, 12480], [60, 14400]], 'outer_abelian': True, 'outer_cyclic': True, 'outer_equivalence': True, 'outer_exponent': 2, 'outer_gen_orders': [2], 'outer_gen_pows': [21266], 'outer_gens': [[39169, 32596, 53592, 45072, 12960, 64800]], 'outer_group': '2.1', 'outer_hash': 1, 'outer_nilpotent': True, 'outer_order': 2, 'outer_permdeg': 2, 'outer_perms': [1], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2', 'pc_rank': 6, 'perfect': False, 'permutation_degree': 24, 'pgroup': 0, 'primary_abelian_invariants': [2, 4], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 8], [3, 4], [4, 3], [6, 8], [12, 9], [16, 2], [24, 14], [32, 3], [48, 18], [64, 1], [96, 9], [192, 1]], 'representations': {'PC': {'code': '1008558753212225743673803130054926491617560988528588920181225151186974751577803730642033227721856379200180120859619223645038986172733357047246506002806261943757391498665657168457458362342551016280175657627641358386484303783543935', 'gens': [1, 3, 5, 7, 10, 11], 'pres': [11, 2, 2, 2, 3, 2, 3, 2, 3, 5, 5, 5, 22, 634668, 1963238, 601603, 90, 3980771, 1617454, 421084, 2234115, 117176, 64387, 158, 98213, 24579, 11918, 3847542, 2267513, 1414210, 314892, 175148, 226, 50695, 50706, 951485, 586648, 4275, 348, 171080, 171091, 534630, 320801, 14308, 3801609, 2946271, 1199922, 376253, 13275, 6272650, 784112, 52315, 72676]}, 'Perm': {'d': 24, 'gens': [1129129429352468595881, 28209890841556454636703]}}, 'schur_multiplier': [2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 4], 'solvability_type': 17, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'D_5^3.C_3^2:D_6', 'transitive_degree': 45, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': True, 'abelian_quotient': '1.1', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': True, 'aut_cyclic': True, 'aut_derived_length': 0, 'aut_exponent': 1, 'aut_gen_orders': [], 'aut_gens': [], 'aut_group': '1.1', 'aut_hash': 1, 'aut_nilpotency_class': 0, 'aut_nilpotent': True, 'aut_order': 1, 'aut_permdeg': 1, 'aut_perms': [], 'aut_phi_ratio': 1.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_1', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 1, 'autcent_group': '1.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 1, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_1', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1]], 'center_label': '1.1', 'center_order': 1, 'central_product': False, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': True, 'complex_characters_known': True, 'composition_factors': [], 'composition_length': 0, 'conjugacy_classes_known': True, 'counter': 1, 'cyclic': True, 'derived_length': 0, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 1, 'exponent': 1, 'exponents_of_order': [], 'factors_of_aut_order': [], 'factors_of_order': [], 'faithful_reps': [[1, 1, 1]], 'familial': True, 'frattini_label': '1.1', 'frattini_quotient': '1.1', 'hash': 1, 'hyperelementary': 1, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [], 'inner_gens': [], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': 1, 'irrQ_degree': 1, 'irrQ_dim': 1, 'irrR_degree': 1, 'irrep_stats': [[1, 1]], 'label': '1.1', 'linC_count': 1, 'linC_degree': 0, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 0, 'linQ_degree_count': 1, 'linQ_dim': 0, 'linQ_dim_count': 1, 'linR_count': 1, 'linR_degree': 0, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C1', 'ngens': 0, 'nilpotency_class': 0, 'nilpotent': True, 'normal_counts': [1], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 1, 'number_characteristic_subgroups': 1, 'number_conjugacy_classes': 1, 'number_divisions': 1, 'number_normal_subgroups': 1, 'number_subgroup_autclasses': 1, 'number_subgroup_classes': 1, 'number_subgroups': 1, 'old_label': None, 'order': 1, 'order_factorization_type': 0, 'order_stats': [[1, 1]], 'outer_abelian': True, 'outer_cyclic': True, 'outer_equivalence': False, 'outer_exponent': 1, 'outer_gen_orders': [], 'outer_gen_pows': [], 'outer_gens': [], 'outer_group': '1.1', 'outer_hash': 1, 'outer_nilpotent': True, 'outer_order': 1, 'outer_permdeg': 1, 'outer_perms': [], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_1', 'pc_rank': 0, 'perfect': True, 'permutation_degree': 1, 'pgroup': 1, 'primary_abelian_invariants': [], 'quasisimple': False, 'rank': 0, 'rational': True, 'rational_characters_known': True, 'ratrep_stats': [[1, 1]], 'representations': {'PC': {'code': 0, 'gens': [], 'pres': []}}, 'schur_multiplier': [], 'semidirect_product': False, 'simple': False, 'smith_abelian_invariants': [], 'solvability_type': 0, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_1', 'transitive_degree': 1, 'wreath_data': None, 'wreath_product': False}