Subgroup ($H$) information
| Description: | not computed |
| Order: | \(2250\)\(\medspace = 2 \cdot 3^{2} \cdot 5^{3} \) |
| Index: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Exponent: | not computed |
| Generators: |
$a^{2}c^{4}d^{25}ef^{3}, f, c^{2}d^{20}, d^{6}, d^{20}, ef$
|
| Derived length: | not computed |
The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.
Ambient group ($G$) information
| Description: | $D_5^3.C_3^2:D_6$ |
| Order: | \(108000\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{3} \) |
| Exponent: | \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \) |
| Derived length: | $4$ |
The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.
Quotient group ($Q$) structure
| Description: | $C_2\times S_4$ |
| Order: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| Automorphism Group: | $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
| Outer Automorphisms: | $C_2$, of order \(2\) |
| Derived length: | $3$ |
The quotient is nonabelian, monomial (hence solvable), and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $D_5^3:\He_3.C_2^3$, of order \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \) |
| $\operatorname{Aut}(H)$ | not computed |
| $W$ | $D_5^3.D_6$, of order \(12000\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{3} \) |
Related subgroups
Other information
| Number of conjugacy classes in this autjugacy class | $1$ |
| Möbius function | $24$ |
| Projective image | $D_5^3.C_3^2:D_6$ |