Properties

Label 108000.b.48.b1
Order $ 2 \cdot 3^{2} \cdot 5^{3} $
Index $ 2^{4} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(2250\)\(\medspace = 2 \cdot 3^{2} \cdot 5^{3} \)
Index: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: not computed
Generators: $a^{2}c^{4}d^{25}ef^{3}, f, c^{2}d^{20}, d^{6}, d^{20}, ef$ Copy content Toggle raw display
Derived length: not computed

The subgroup is characteristic (hence normal), nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $D_5^3.C_3^2:D_6$
Order: \(108000\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_2\times S_4$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
Outer Automorphisms: $C_2$, of order \(2\)
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5^3:\He_3.C_2^3$, of order \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ not computed
$W$$D_5^3.D_6$, of order \(12000\)\(\medspace = 2^{5} \cdot 3 \cdot 5^{3} \)

Related subgroups

Centralizer:$C_3^2$
Normalizer:$D_5^3.C_3^2:D_6$
Minimal over-subgroups:$(C_5\times C_{15}^2):C_6$$C_5^3:(C_2\times C_3:S_3)$$C_3^2\times D_5\times C_5:D_5$$C_5^3:(C_2\times C_3:S_3)$$C_3\times C_5^3:(C_3:C_4)$$C_3\times C_5^3:(C_3:C_4)$
Maximal under-subgroups:$C_5\times C_{15}^2$$C_5^3:C_6$$C_5^3:C_6$$C_{15}^2:C_2$$C_{15}^2:C_2$$C_{15}^2:C_2$$C_{15}^2:C_2$$C_{15}^2:C_2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function$24$
Projective image$D_5^3.C_3^2:D_6$