Properties

Label 108000.b.144.k1
Order $ 2 \cdot 3 \cdot 5^{3} $
Index $ 2^{4} \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5^3:C_6$
Order: \(750\)\(\medspace = 2 \cdot 3 \cdot 5^{3} \)
Index: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Exponent: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Generators: $a^{2}c^{4}d^{25}ef^{3}, d^{6}, ef, d^{20}, f$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_5^3.C_3^2:D_6$
Order: \(108000\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5^3:\He_3.C_2^3$, of order \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ $C_2\times C_5^2:D_5.C_2.\PSL(3,5)$
$W$$D_5^3:C_4$, of order \(4000\)\(\medspace = 2^{5} \cdot 5^{3} \)

Related subgroups

Centralizer:$C_3^2$
Normalizer:$C_5^3.C_6^2.C_2^3$
Normal closure:$C_3^2\times C_5^2:D_5$
Core:$C_5^3:C_2$
Minimal over-subgroups:$C_3^2\times C_5^2:D_5$$C_5^3:D_6$$C_{15}:D_5^2$$C_{15}:D_5^2$$C_{15}:D_5^2$$C_{15}:D_5^2$$C_5^3:C_{12}$$(C_5\times C_{15}):F_5$
Maximal under-subgroups:$C_5^2\times C_{15}$$C_5^3:C_2$$C_{15}:D_5$$C_{15}:D_5$$C_{15}:D_5$$C_{15}:D_5$$C_{15}:D_5$$C_{15}:D_5$$C_{15}:D_5$$C_{15}:D_5$$C_{15}:D_5$

Other information

Number of subgroups in this autjugacy class$3$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$D_5^3.C_3^2:D_6$