Properties

Label 108000.b.30.c1
Order $ 2^{4} \cdot 3^{2} \cdot 5^{2} $
Index $ 2 \cdot 3 \cdot 5 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:not computed
Order: \(3600\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{2} \)
Index: \(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
Exponent: not computed
Generators: $a^{3}e^{4}f, d^{20}, d^{6}, d^{15}e^{4}f^{3}, c^{2}d^{20}, ef^{3}, b^{3}, a^{2}c^{4}d^{10}ef^{4}$ Copy content Toggle raw display
Derived length: not computed

The subgroup is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group. Whether it is elementary, hyperelementary, monomial, simple, quasisimple, perfect, almost simple, or rational has not been computed.

Ambient group ($G$) information

Description: $D_5^3.C_3^2:D_6$
Order: \(108000\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{3} \)
Exponent: \(60\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$D_5^3:\He_3.C_2^3$, of order \(216000\)\(\medspace = 2^{6} \cdot 3^{3} \cdot 5^{3} \)
$\operatorname{Aut}(H)$ not computed
$\card{W}$\(3600\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{2} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$C_{15}^2.C_4.C_2^2$
Normal closure:$D_5^3.C_3^2:D_6$
Core:$C_3:S_3$
Minimal over-subgroups:$C_5^3.(C_2.S_3^2).C_2$
Maximal under-subgroups:$C_{15}^2:C_2^3$$C_{15}:(S_3\times C_{20})$$C_{15}:(S_3\times F_5)$$D_5\times C_{15}:C_{12}$$D_5\times C_{15}:C_{12}$$C_{15}:(C_4\times D_{15})$$C_{15}:(C_4\times D_{15})$$D_5^2.D_6$$D_5^2.D_6$$D_{10}.S_3^2$$D_{10}.S_3^2$

Other information

Number of subgroups in this autjugacy class$30$
Number of conjugacy classes in this autjugacy class$1$
Möbius function$0$
Projective image$D_5^3.C_3^2:D_6$