Subgroup ($H$) information
Description: | $C_3\times C_9$ |
Order: | \(27\)\(\medspace = 3^{3} \) |
Index: | \(4\)\(\medspace = 2^{2} \) |
Exponent: | \(9\)\(\medspace = 3^{2} \) |
Generators: |
$a, c^{2}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is maximal, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $3$-Sylow subgroup (hence a Hall subgroup), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $C_3^2.A_4$ |
Order: | \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) |
Exponent: | \(18\)\(\medspace = 2 \cdot 3^{2} \) |
Derived length: | $2$ |
The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_6^2:S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \) |
$\operatorname{Aut}(H)$ | $C_3^2:D_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) |
$\operatorname{res}(S)$ | $C_3^2:D_6$, of order \(108\)\(\medspace = 2^{2} \cdot 3^{3} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(3\) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $C_3\times C_9$ | |||
Normalizer: | $C_3\times C_9$ | |||
Normal closure: | $C_3^2.A_4$ | |||
Core: | $C_3^2$ | |||
Minimal over-subgroups: | $C_3^2.A_4$ | |||
Maximal under-subgroups: | $C_3^2$ | $C_9$ | $C_9$ | $C_9$ |
Other information
Number of subgroups in this conjugacy class | $4$ |
Möbius function | $-1$ |
Projective image | $A_4$ |