Properties

Label 108.20.12.b1.b1
Order $ 3^{2} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_9$
Order: \(9\)\(\medspace = 3^{2} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(9\)\(\medspace = 3^{2} \)
Generators: $ac^{2}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Ambient group ($G$) information

Description: $C_3^2.A_4$
Order: \(108\)\(\medspace = 2^{2} \cdot 3^{3} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Derived length:$2$

The ambient group is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^2:S_3^2$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
$\operatorname{Aut}(H)$ $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\operatorname{res}(S)$$C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(18\)\(\medspace = 2 \cdot 3^{2} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_3\times C_9$
Normalizer:$C_3\times C_9$
Normal closure:$C_2^2:C_9$
Core:$C_3$
Minimal over-subgroups:$C_2^2:C_9$$C_3\times C_9$
Maximal under-subgroups:$C_3$
Autjugate subgroups:108.20.12.b1.a1108.20.12.b1.c1

Other information

Number of subgroups in this conjugacy class$4$
Möbius function$1$
Projective image$C_3\times A_4$