Properties

Label 10368.jf.12.BM
Order $ 2^{5} \cdot 3^{3} $
Index $ 2^{2} \cdot 3 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^2.S_4$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Index: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Generators: $\langle(14,16)(15,17), (10,13)(11,12), (3,7,5)(6,9,8), (10,11)(12,13), (1,3,6,2,5,9,4,7,8) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and monomial (hence solvable).

Ambient group ($G$) information

Description: $D_4\times C_6^2.S_3^2$
Order: \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_3\times C_6^2).C_6^2.C_2^5$
$\operatorname{Aut}(H)$ $C_3^2.S_4\times S_4$
$W$$C_6^2.D_6$, of order \(432\)\(\medspace = 2^{4} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$D_4\times C_3^2.S_4$
Normal closure:$D_4\times C_3^3:S_4$
Core:$C_2^2\times C_6^2$
Minimal over-subgroups:$C_6^3:D_6$$D_4\times C_3^2.S_4$
Maximal under-subgroups:$C_6^2.A_4$$C_6^2.D_6$$C_6^2.D_6$$C_6^2.D_6$$C_6^2:D_4$$C_2^3:D_{18}$

Other information

Number of subgroups in this autjugacy class$12$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_6^2.D_6^2$