Subgroup ($H$) information
Description: | $C_6^2:D_4$ |
Order: | \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
Index: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Generators: |
$\langle(14,16)(15,17), (10,13)(11,12), (3,7,5)(6,9,8), (10,11)(12,13), (1,4,2)(3,7,5)(6,8,9), (2,4)(3,6,5,8,7,9)(10,12,13,11), (14,15)(16,17)\rangle$
|
Derived length: | $2$ |
The subgroup is nonabelian, supersolvable (hence solvable and monomial), and metabelian.
Ambient group ($G$) information
Description: | $D_4\times C_6^2.S_3^2$ |
Order: | \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \) |
Exponent: | \(36\)\(\medspace = 2^{2} \cdot 3^{2} \) |
Derived length: | $3$ |
The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_3\times C_6^2).C_6^2.C_2^5$ |
$\operatorname{Aut}(H)$ | $C_2^6.(D_6\times S_4)$, of order \(18432\)\(\medspace = 2^{11} \cdot 3^{2} \) |
$W$ | $C_2^2\times D_6$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $18$ |
Number of conjugacy classes in this autjugacy class | $2$ |
Möbius function | not computed |
Projective image | $C_6^2.D_6^2$ |