Properties

Label 10368.jf.2592.A
Order $ 2^{2} $
Index $ 2^{5} \cdot 3^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Exponent: \(2\)
Generators: $\langle(14,16)(15,17), (14,15)(16,17)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Ambient group ($G$) information

Description: $D_4\times C_6^2.S_3^2$
Order: \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Derived length:$3$

The ambient group is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_6^3:D_6$
Order: \(2592\)\(\medspace = 2^{5} \cdot 3^{4} \)
Exponent: \(36\)\(\medspace = 2^{2} \cdot 3^{2} \)
Automorphism Group: $C_6^3:(C_6\times D_6)$, of order \(15552\)\(\medspace = 2^{6} \cdot 3^{5} \)
Outer Automorphisms: $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian, monomial (hence solvable), and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_3\times C_6^2).C_6^2.C_2^5$
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_6^2.D_6^2$
Normalizer:$D_4\times C_6^2.S_3^2$
Complements:$C_6^3:D_6$
Minimal over-subgroups:$C_2\times C_6$$D_4$$D_4$$D_4$$D_4$$D_4$$D_4$
Maximal under-subgroups:$C_2$$C_2$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_6^2.D_6^2$