Properties

Label 10368.hn.72.b1
Order $ 2^{4} \cdot 3^{2} $
Index $ 2^{3} \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$A_4^2$
Order: \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)
Index: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(1,8)(4,5), (3,7,6)(4,5,8), (3,6,7)(4,5,8), (1,8)(2,3)(4,5)(6,7), (1,5)(4,8), (2,6)(3,7)\rangle$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $C_2^5:(C_3^4:C_4)$
Order: \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \)
Exponent: \(24\)\(\medspace = 2^{3} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_2\times C_3^2:C_4$
Order: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $F_9:C_2^2$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \)
Outer Automorphisms: $C_2^3$, of order \(8\)\(\medspace = 2^{3} \)
Derived length: $2$

The quotient is nonabelian, monomial (hence solvable), metabelian, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^4.C_3^2.C_4:\SD_{16}.C_2$
$\operatorname{Aut}(H)$ $S_4\wr C_2$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
$W$$A_4^2:C_4$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_3\times C_6$
Normalizer:$C_2^5:(C_3^4:C_4)$
Complements:$C_2\times C_3^2:C_4$ $C_2\times C_3^2:C_4$ $C_2\times C_3^2:C_4$
Minimal over-subgroups:$C_3\times A_4^2$$C_2\times A_4^2$$\PSOPlus(4,3)$$\PSOPlus(4,3)$
Maximal under-subgroups:$C_2^2\times A_4$$C_2^2:A_4$$C_3\times A_4$

Other information

Number of subgroups in this autjugacy class$9$
Number of conjugacy classes in this autjugacy class$9$
Möbius function$0$
Projective image$C_2^5:(C_3^4:C_4)$