Subgroup ($H$) information
Description: | $A_4^2$ |
Order: | \(144\)\(\medspace = 2^{4} \cdot 3^{2} \) |
Index: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Generators: |
$\langle(1,8)(4,5), (3,7,6)(4,5,8), (3,6,7)(4,5,8), (1,8)(2,3)(4,5)(6,7), (1,5)(4,8), (2,6)(3,7)\rangle$
|
Derived length: | $2$ |
The subgroup is normal, a semidirect factor, nonabelian, monomial (hence solvable), metabelian, and an A-group.
Ambient group ($G$) information
Description: | $C_2^5:(C_3^4:C_4)$ |
Order: | \(10368\)\(\medspace = 2^{7} \cdot 3^{4} \) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
Description: | $C_2\times C_3^2:C_4$ |
Order: | \(72\)\(\medspace = 2^{3} \cdot 3^{2} \) |
Exponent: | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Automorphism Group: | $F_9:C_2^2$, of order \(288\)\(\medspace = 2^{5} \cdot 3^{2} \) |
Outer Automorphisms: | $C_2^3$, of order \(8\)\(\medspace = 2^{3} \) |
Derived length: | $2$ |
The quotient is nonabelian, monomial (hence solvable), metabelian, and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_6^4.C_3^2.C_4:\SD_{16}.C_2$ |
$\operatorname{Aut}(H)$ | $S_4\wr C_2$, of order \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \) |
$W$ | $A_4^2:C_4$, of order \(576\)\(\medspace = 2^{6} \cdot 3^{2} \) |
Related subgroups
Other information
Number of subgroups in this autjugacy class | $9$ |
Number of conjugacy classes in this autjugacy class | $9$ |
Möbius function | $0$ |
Projective image | $C_2^5:(C_3^4:C_4)$ |