Properties

Label 1024.dhl.32.l1.a1
Order $ 2^{5} $
Index $ 2^{5} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^5$
Order: \(32\)\(\medspace = 2^{5} \)
Index: \(32\)\(\medspace = 2^{5} \)
Exponent: \(2\)
Generators: $\langle(5,6)(7,8)(9,10)(11,12), (1,2)(3,4)(13,14)(15,16), (3,4)(5,8)(6,7)(9,11)(10,12)(15,16), (5,6)(7,8)(13,14)(15,16), (13,14)(15,16)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and rational.

Ambient group ($G$) information

Description: $(D_4\times C_2^3).Q_{16}$
Order: \(1024\)\(\medspace = 2^{10} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Nilpotency class:$7$
Derived length:$3$

The ambient group is nonabelian and a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^5:C_4.D_4^2$, of order \(8192\)\(\medspace = 2^{13} \)
$\operatorname{Aut}(H)$ $\GL(5,2)$, of order \(9999360\)\(\medspace = 2^{10} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 31 \)
$\operatorname{res}(S)$$D_4:D_4$, of order \(64\)\(\medspace = 2^{6} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(64\)\(\medspace = 2^{6} \)
$W$$C_4:C_4$, of order \(16\)\(\medspace = 2^{4} \)

Related subgroups

Centralizer:$C_2^5$
Normalizer:$C_2^5.C_4^2$
Normal closure:$D_4\times C_2^3$
Core:$C_2^4$
Minimal over-subgroups:$D_4\times C_2^3$$D_4\times C_2^3$$D_4\times C_2^3$
Maximal under-subgroups:$C_2^4$$C_2^4$$C_2^4$$C_2^4$$C_2^4$$C_2^4$$C_2^4$$C_2^4$$C_2^4$

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$(C_2^4:C_4) . (C_2\times C_4)$