-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'ambient': '1024.dhl', 'ambient_counter': 2222, 'ambient_order': 1024, 'ambient_tex': '(D_4\\times C_2^3).Q_{16}', 'central': False, 'central_factor': False, 'centralizer_order': 32, 'characteristic': False, 'core_order': 16, 'counter': 94, 'cyclic': False, 'direct': None, 'hall': 0, 'label': '1024.dhl.32.l1.a1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': False, 'minimal': False, 'minimal_normal': False, 'nilpotent': True, 'normal': False, 'old_label': '32.l1.a1', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': None, 'quotient_Agroup': None, 'quotient_abelian': None, 'quotient_cyclic': None, 'quotient_hash': None, 'quotient_metabelian': None, 'quotient_nilpotent': None, 'quotient_order': 32, 'quotient_simple': None, 'quotient_solvable': None, 'quotient_supersolvable': None, 'quotient_tex': None, 'simple': False, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '32.51', 'subgroup_hash': 51, 'subgroup_order': 32, 'subgroup_tex': 'C_2^5', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '1024.dhl', 'aut_centralizer_order': 64, 'aut_label': '32.l1', 'aut_quo_index': None, 'aut_stab_index': 2, 'aut_weyl_group': '64.227', 'aut_weyl_index': 128, 'centralizer': '32.l1.a1', 'complements': None, 'conjugacy_class_count': 1, 'contained_in': ['16.b1.a1', '16.h1.a1', '16.l1.a1'], 'contains': ['64.a1.a1', '64.f1.a1', '64.f2.a1', '64.j1.a1', '64.bc1.a1', '64.bz1.a1', '64.bz1.b1', '64.bz2.a1', '64.bz2.b1'], 'core': '64.a1.a1', 'coset_action_label': None, 'count': 2, 'diagramx': [5564, -1, 4647, -1, 5570, -1, 4650, -1], 'generators': [40284840, 1313901388807, 6354403201, 40279687, 7], 'label': '1024.dhl.32.l1.a1', 'mobius_quo': None, 'mobius_sub': 0, 'normal_closure': '16.b1.a1', 'normal_contained_in': None, 'normal_contains': None, 'normalizer': '2.b1.a1', 'old_label': '32.l1.a1', 'projective_image': '512.1899', 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '32.l1.a1', 'subgroup_fusion': None, 'weyl_group': '16.4'}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'abelian_quotient': '32.51', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 0, 'aut_exponent': 26040, 'aut_gen_orders': [2, 5], 'aut_gens': [[1, 2, 4, 8, 16], [5, 2, 4, 12, 16], [11, 8, 27, 26, 13]], 'aut_group': '9999360.a', 'aut_hash': 2505043529366670169, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 9999360, 'aut_permdeg': 31, 'aut_perms': [2450617681096434660778009755366, 945758899833610526331495647332850], 'aut_phi_ratio': 624960.0, 'aut_solvable': False, 'aut_stats': [[1, 1, 1, 1], [2, 1, 31, 1]], 'aut_supersolvable': False, 'aut_tex': '\\GL(5,2)', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 26040, 'autcent_group': '9999360.a', 'autcent_hash': 2505043529366670169, 'autcent_nilpotent': False, 'autcent_order': 9999360, 'autcent_solvable': False, 'autcent_split': True, 'autcent_supersolvable': False, 'autcent_tex': '\\GL(5,2)', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [2, 1, 31]], 'center_label': '32.51', 'center_order': 32, 'central_product': True, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1'], 'composition_length': 5, 'conjugacy_classes_known': True, 'counter': 51, 'cyclic': False, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [['2.1', 5]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 31]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 1, 'exponent': 2, 'exponents_of_order': [5], 'factors_of_aut_order': [2, 3, 5, 7, 31], 'factors_of_order': [2], 'faithful_reps': [], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '32.51', 'hash': 51, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1, 1, 1, 1, 1], 'inner_gens': [[1, 2, 4, 8, 16], [1, 2, 4, 8, 16], [1, 2, 4, 8, 16], [1, 2, 4, 8, 16], [1, 2, 4, 8, 16]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 32]], 'label': '32.51', 'linC_count': None, 'linC_degree': 5, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 5, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C2^5', 'ngens': 5, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 2, 'number_characteristic_subgroups': 2, 'number_conjugacy_classes': 32, 'number_divisions': 32, 'number_normal_subgroups': 374, 'number_subgroup_autclasses': 6, 'number_subgroup_classes': 374, 'number_subgroups': 374, 'old_label': None, 'order': 32, 'order_factorization_type': 3, 'order_stats': [[1, 1], [2, 31]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 26040, 'outer_gen_orders': [2, 5], 'outer_gen_pows': [0, 0], 'outer_gens': [[5, 2, 4, 12, 16], [11, 8, 27, 26, 13]], 'outer_group': '9999360.a', 'outer_hash': 2505043529366670169, 'outer_nilpotent': False, 'outer_order': 9999360, 'outer_permdeg': 31, 'outer_perms': [2450617681096434660778009755366, 945758899833610526331495647332850], 'outer_solvable': False, 'outer_supersolvable': False, 'outer_tex': '\\GL(5,2)', 'pc_rank': 5, 'perfect': False, 'permutation_degree': 10, 'pgroup': 2, 'primary_abelian_invariants': [2, 2, 2, 2, 2], 'quasisimple': False, 'rank': 5, 'rational': True, 'rational_characters_known': True, 'ratrep_stats': [[1, 32]], 'representations': {'PC': {'code': 0, 'gens': [1, 2, 3, 4, 5], 'pres': [5, -2, 2, 2, 2, 2]}, 'GLZ': {'b': 3, 'd': 5, 'gens': [141602720900, 705686952884, 706461793860, 706460730980, 706461792404]}, 'GLFp': {'d': 5, 'p': 2, 'gens': [5226561, 7292993, 5128257, 20225089, 6210625]}, 'Perm': {'d': 10, 'gens': [362880, 5040, 120, 6, 1]}}, 'schur_multiplier': [2, 2, 2, 2, 2, 2, 2, 2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2, 2, 2], 'solvability_type': 2, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_2^5', 'transitive_degree': 32, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '8.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 8, 'aut_gen_orders': [8, 8, 4, 4, 2, 4, 2, 2, 2], 'aut_gens': [[5606713341487, 19614899428423], [6920487710647, 175811776], [5606713336327, 1314164643263], [15309936265552, 2789881493167], [8402518656142, 16825107030359], [5612940725046, 19614939708103], [6920614725127, 19608712329457], [5606673782407, 20916387055303], [5606713341487, 20916346780783], [6920575171200, 19614899428423]], 'aut_group': '8192.bbt', 'aut_hash': 2144635052841457525, 'aut_nilpotency_class': 6, 'aut_nilpotent': True, 'aut_order': 8192, 'aut_permdeg': 384, 'aut_perms': [196668881448381636232675155534825285093120493092049613146335243878422368100976086945849820101516227906343386161297420973718400192902324764762374227273252690699497652535808015666364990085586595576595942987685005690938157023943930677873574426231127074367841095858402676786190251831333910968186698895877043800267918282170679021722621269887948913119674724582480391518970761955383450081781917240729651849840508815035918072076652273117264665040782273535574855050288813462627632073688427567995036264939642202064527183436345297196885920396302179754146481148931577842104343615101969829229711555661339582946360405090683486002413050476937718475379696160908831104304462913457606880762489458915965394586802466833763312320296176514485685428454356049018334597425672251332860824776120844153241580926295543165028170122234122676183613262849664046, 164096655522761142236900760391904706713782347603119736077342530448122874086752395820985452829487064732313420443212905294055346123119476458099426947702052941023688547974768406955119974082814055218544590270955594589274530085680482766202359039367704901012567948509671688172478504436670496606206387080675320836817828458413971640483277745105933788836701747249458927276117813159719936199414327460750614615334171076888633129305939697405946548203221548023157075877240779615292613185826819604072192375065686250586855552838672738445722204178518642551482450300156058048955680131310101705518249428265227144026018323196655393574038245353126947607909200963882408364141924687388078121541137138708193872251274735915422407046763794565966528511458937024045809895096753211811348380723709969284267002061427346584827896053484830098693201888687155751, 89869244193299951559166793906613160329590234864695534706086513191891982155594885237414234941432030705795277870548490201170817960975754407481446234956484561066904383064434388024512681729498773862009179193410967286438114163226583652816127843620934204371315809216337413174862604614354899993520865769429185770058217255573420682006424948278037904048108601171156523972669817540827598487593702356897287494634682987823310514489279919492254234143797731470801603336572568565790587802490335192153999631424021600318226368518926100486804695087028100069023980636761241046222133015292275666126979736011588796421711260220994191457938316770130781676492460655302496662400097820838646172618124329322713540691871006272289175249886005738544945896504162306554371153716109348224408239309449316888219478300744060629157502417358190216374847576006567811, 14626409306732847644771858165309606071492775780948474260682984494815065676930410329539280255538356170673028606684356759490743091873696151922716090559650778837107485101221430925683848809913980456608888289014453922337771874819947454215673373142294187813373678448833164561542262729851918941951732783836700528045619869901766554244005912956278504459229562039073675380022790199888517927730316870738431297497399866195081556243317099690350290925903010655063776561578271438735261388124211518846338535420803224538827004255240568049785553827939387519089995964221710915435697136776570192301074163518030167516568028542297536484894182934113536112957154005257022233830148894867350057431924870914689523811141127880458749520998961861382068458377156084170584265984133673575856772483933509410435949498012778700494161648757713797404362728550963407, 79088492398648543536556162988556629604623697260008919287581659479487535299897636974166296717456603798469049952226945681118838174641772034354822631861593102552714745599968597552411932148601734832273822059779510426404322370129442876100937114180753065076558774100627931118344981159362620572407569019560796995126706207058616476277544372802499238401195964611070900569154587642975042539649500804812729294430515699535811568441460856257583082864557039579018845743734038030576986580483023447920524257901063443214069768829310318784412355783539720636900244230581949583618594428670020803070253158302077904793778630257102152720292687841112107557574297120364544784784098867442001974718926302271509432218769723671565077455356864319334110734068203376781448712864865454948850549186975227457190011633094278294813802024009142900747151789430381908, 147847031290883712989663574309970166019054079323727468872268784549724215846556565966827230153193312057802155591018532900196149296546125773866455422357109396469599453839282461002035253119629961465220261617047600009849994727691640774027607351041197773399653490751146746035398752400320748374904916759032991179123207879187316640220385641717744732171835977089488702588777469475386065659044461478745274002280281466188541236219424026545464789538899338494758145881539088280088077504399354895333141924481378689404826562017063879920597112452721490590527649285346852541438745340471330435599621457412006823059611780299188814701341488666402098578167004068868146060154143853271905411205698556527254895774794301317503122060450424714171057336584349976700549832478016727891991383571416332171538381851165149042346033196421976987543617531767062383, 87928907133130376988302500310971162576096839992774463359134345152616579527082719348355212795592018988650006302091730141915823273201096609619460462311509562665615806273470577352762455099584007457951511737156907015405589953879551459139010310511415913911988226156501197034320779157810809248167522293770973600159295746285027508413821591800478491510781929677857430330993384616625113115628658537258200804940603662877599866300366243954878743684762874993947061387190045072473043431187519014425324501327493324613795498066130382415408134864820597190805272753886736551050725240983832144237301981705986102397290687597105595092693539892538669193709459886533556818169083425056413633998987986009764419323698304022379030968343065918182578072581728655475835403126831869670841191640428221146120611618959716118401025251862167869476847690496902, 93748856402916132469405580957439840887977537556393018672438351872642441208320607850196341722291472412643278953677610458968263148202768539315006288066614731801861868365592835303701219996275589012591376580004602182308982831539797813397038255049781188577746608190340508188697452664181547860589072863949333646628695440165695862102327376339718289065809189494810134807104497548207614065155604004688853757029957239034851859038987233131014270249683371630302753586273992642048239586148552945258862228031333203876313775591799124810626017075177304402939728016547051758687243030745945684205383473773784055801136854930224074771924691801292135833679541284593081739759860878318396426550169639510323678660039591151997617260490322217751324763313563956970038174689689770840490161682229166715393676664088852701885188812964215024936494334691556754, 41805793931330459818000471811089281928429524746410151583049050251422859928242628304223642794886840785111661183599071323177968975280276749698620934544846972853835444561616441600461130673170756542403701621444121482073198062726444237081657135032238590530928448866315458970783598183255217068362856301575375225541663011435124855158316049897405371400079585317104434559394269420136838662310486046985968648689610941643026704768221349911043493394677587295935312452108344611020622299201038515106345171048236907660299766467116520867929119370266127475047397077293686335347966773177838811067883023621173493137012149817283662144637026112723090985512587224216353126350856393007686950345887717717518341629503165528872794685639520427703997663246329787577503093269125279652339792049497262338393220589441273350452378398663869600089537358321851975], 'aut_phi_ratio': 16.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 1], [2, 4, 1, 1], [2, 4, 2, 1], [2, 8, 1, 2], [2, 16, 1, 1], [2, 32, 1, 1], [4, 8, 2, 2], [4, 16, 1, 1], [4, 32, 2, 1], [4, 64, 1, 1], [4, 64, 2, 2], [8, 32, 8, 1], [8, 64, 4, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_2^5:C_4.D_4^2', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '4.2', 'autcent_hash': 2, 'autcent_nilpotent': True, 'autcent_order': 4, 'autcent_solvable': True, 'autcent_split': False, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^2', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 8, 'autcentquo_group': None, 'autcentquo_hash': 9209672534681614391, 'autcentquo_nilpotent': True, 'autcentquo_order': 2048, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_2^5.C_2.C_2^5', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 2, 1], [2, 4, 3], [2, 8, 2], [2, 16, 1], [2, 32, 1], [4, 8, 4], [4, 16, 1], [4, 32, 2], [4, 64, 5], [8, 32, 8], [8, 64, 4]], 'center_label': '2.1', 'center_order': 2, 'central_product': False, 'central_quotient': '512.1899', 'commutator_count': 1, 'commutator_label': '128.513', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1'], 'composition_length': 10, 'conjugacy_classes_known': True, 'counter': 2222, 'cyclic': False, 'derived_length': 3, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 1], [2, 4, 1, 3], [2, 8, 1, 2], [2, 16, 1, 1], [2, 32, 1, 1], [4, 8, 1, 4], [4, 16, 1, 1], [4, 32, 2, 1], [4, 64, 1, 3], [4, 64, 2, 1], [8, 32, 2, 4], [8, 64, 4, 1]], 'element_repr_type': 'Perm', 'elementary': 2, 'eulerian_function': 48, 'exponent': 8, 'exponents_of_order': [10], 'factors_of_aut_order': [2], 'factors_of_order': [2], 'faithful_reps': [[8, 0, 4], [8, 1, 4]], 'familial': False, 'frattini_label': '256.1534', 'frattini_quotient': '4.2', 'hash': 5502138377298815999, 'hyperelementary': 2, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 8, 'inner_gen_orders': [8, 8], 'inner_gens': [[5606713341487, 302803223], [11212509393342, 19614899428423]], 'inner_hash': 5284139924001968831, 'inner_nilpotent': True, 'inner_order': 512, 'inner_split': False, 'inner_tex': 'C_2^3.C_2\\wr C_4', 'inner_used': [1, 2], 'irrC_degree': 8, 'irrQ_degree': 8, 'irrQ_dim': 8, 'irrR_degree': 8, 'irrep_stats': [[1, 8], [2, 10], [4, 5], [8, 10], [16, 1]], 'label': '1024.dhl', 'linC_count': 8, 'linC_degree': 8, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 8, 'linQ_degree_count': 4, 'linQ_dim': 8, 'linQ_dim_count': 4, 'linR_count': 4, 'linR_degree': 8, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': True, 'name': '(D4*C2^3).Q16', 'ngens': 2, 'nilpotency_class': 7, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 18, 'number_characteristic_subgroups': 23, 'number_conjugacy_classes': 34, 'number_divisions': 25, 'number_normal_subgroups': 23, 'number_subgroup_autclasses': 319, 'number_subgroup_classes': 478, 'number_subgroups': 4949, 'old_label': None, 'order': 1024, 'order_factorization_type': 7, 'order_stats': [[1, 1], [2, 79], [4, 432], [8, 512]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 4, 'outer_gen_orders': [2, 2, 2, 2], 'outer_gen_pows': [6266942646, 0, 6266942641, 0], 'outer_gens': [[8396292003256, 16818880372558], [8396331557183, 20916346775623], [15309849525832, 4103869598640], [5606713341487, 20916387060456]], 'outer_group': '16.11', 'outer_hash': 11, 'outer_nilpotent': True, 'outer_order': 16, 'outer_permdeg': 6, 'outer_perms': [6, 415, 1, 126], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2\\times D_4', 'pc_rank': 6, 'perfect': False, 'permutation_degree': 16, 'pgroup': 2, 'primary_abelian_invariants': [2, 4], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 4], [4, 7], [8, 7], [16, 3]], 'representations': {'PC': {'code': '30106282878508839298391796064394657236571552034267932583306596143952263136698135', 'gens': [1, 2, 5, 7, 8, 9], 'pres': [10, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 8000, 3641, 51, 29642, 82, 23363, 7204, 21614, 1824, 334, 144, 15375, 40326, 3376, 10666, 29457, 3227, 32418, 10108, 8678, 268, 1619]}, 'Perm': {'d': 16, 'gens': [5606713341487, 19614899428423]}}, 'schur_multiplier': [2, 2], 'semidirect_product': False, 'simple': False, 'smith_abelian_invariants': [2, 4], 'solvability_type': 5, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': '(D_4\\times C_2^3).Q_{16}', 'transitive_degree': 16, 'wreath_data': None, 'wreath_product': False}