Properties

Label 1024.dfb.64.bm1
Order $ 2^{4} $
Index $ 2^{6} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{16}$
Order: \(16\)\(\medspace = 2^{4} \)
Index: \(64\)\(\medspace = 2^{6} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Generators: $\langle(1,3,6,8,2,4,5,7)(9,11,13,16,10,12,14,15), (1,9,3,11,6,13,8,16,2,10,4,12,5,14,7,15) \!\cdots\! \rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Ambient group ($G$) information

Description: $C_2^6.\OD_{16}$
Order: \(1024\)\(\medspace = 2^{10} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Nilpotency class:$7$
Derived length:$3$

The ambient group is nonabelian and a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^7.C_2\wr D_4$, of order \(16384\)\(\medspace = 2^{14} \)
$\operatorname{Aut}(H)$ $C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
$\operatorname{res}(S)$$C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(32\)\(\medspace = 2^{5} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{16}$
Normalizer:$\OD_{32}$
Normal closure:$C_2^6.C_8$
Core:$C_2$
Minimal over-subgroups:$\OD_{32}$
Maximal under-subgroups:$C_8$

Other information

Number of subgroups in this autjugacy class$64$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$0$
Projective image$(C_2^3\times C_4) . (C_2\times C_8)$