Properties

Label 16384.mu
Order \( 2^{14} \)
Exponent \( 2^{3} \)
Nilpotent yes
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{4} \)
$\card{Z(G)}$ \( 2 \)
$\card{\Aut(G)}$ \( 2^{19} \)
$\card{\mathrm{Out}(G)}$ \( 2^{6} \)
Perm deg. not computed
Trans deg. not computed
Rank $4$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 128 | (1,112,91,19)(2,52,104,24)(3,67,70,44)(4,102,84,88)(5,98,38,59)(6,63,115,66)(7,122,89,64)(8,78,116,11)(9,100,107,83)(10,94,99,35)(12,87,117,62)(13,95,127,37)(14,48,109,34)(15,36,114,47)(16,56,77,90)(17,72,124,76)(18,46,121,53)(20,86,120,31)(21,108,93,81)(22,113,97,118)(23,85,110,57)(25,75,126,49)(26,71,103,65)(27,119,51,58)(28,42,40,123)(29,106,73,60)(30,50,105,69)(32,92,54,82)(33,128,79,43)(39,96,111,74)(41,61,55,125)(45,68,80,101), (1,42,45,25)(2,9,20,22)(3,17,74,18)(4,8,6,13)(5,15,26,43)(7,102,76,65,29,100,34,101)(10,81,23,64)(11,57,48,68,31,16,72,71)(12,14,32,58)(19,52,50,53,59,95,94,51)(21,113,28,111,55,63,47,82)(24,35,40,39,37,69,36,92)(27,112,93,66,46,98,41,118)(30,61,56,60)(33,87,89,83,75,67,73,88)(38,119,70,126)(44,78,77,79,62,86,85,49)(54,114,80,124)(84,122,99,127)(90,120,97,125)(91,121,117,128)(96,123,103,109)(104,107,106,105)(108,110,116,115), (1,64,5,60)(2,26,13,45)(3,81,12,61)(4,18,9,58)(6,25,22,43)(7,85,29,77)(8,74,20,32)(10,14,30,17)(11,16,31,57)(15,56,42,23)(19,51,59,53)(21,94,55,50)(24,35,37,69)(27,92,46,39)(28,111,47,82)(33,71,75,68)(34,65,76,101)(36,98,40,112)(38,120,91,116)(41,66,93,118)(44,79,62,49)(48,87,72,67)(52,113,95,63)(54,122,96,106)(70,127,117,104)(73,88,89,83)(78,102,86,100)(80,125,103,108)(84,114,107,123)(90,119,110,121)(97,124,115,109)(99,126,105,128), (1,10,74,22)(2,17)(3,23,45,9)(4,12,56,26)(5,30,32,6)(7,34,78,79)(8,15)(11,33,73,72)(13,14)(18,64)(19,59)(20,42)(21,28,95,53)(24,27,93,40)(25,81)(29,76,86,49)(31,75,89,48)(35,69)(36,37,46,41)(38,97,96,105)(39,98,92,112)(43,61)(47,52,51,55)(50,113,94,63)(54,99,91,115)(58,60)(65,101)(67,71,87,68)(70,84,103,110)(77,102,85,100)(80,90,117,107)(83,88)(104,109,127,124)(106,121,122,119)(108,128,125,126)(114,116,123,120), (1,93,23,49)(2,113,104,118,81,50,125,35)(3,89,30,51)(4,76,74,37)(5,41,56,79)(6,28,26,31)(7,99,40,103,29,105,36,80)(8,102,120,83,60,85,106,57)(9,34,32,24)(10,53,12,73)(11,22,47,45)(13,63,127,66,61,94,108,69)(14,87,124,62,43,68,128,65)(15,98,114,19,58,39,121,111)(16,20,100,116,88,64,77,122)(17,67,109,44,25,71,126,101)(18,92,119,82,42,112,123,59)(21,90,48,54,55,110,72,96)(27,70,78,115,46,117,86,97)(33,38,52,84,75,91,95,107) >;
 
Copy content gap:G := Group( (1,112,91,19)(2,52,104,24)(3,67,70,44)(4,102,84,88)(5,98,38,59)(6,63,115,66)(7,122,89,64)(8,78,116,11)(9,100,107,83)(10,94,99,35)(12,87,117,62)(13,95,127,37)(14,48,109,34)(15,36,114,47)(16,56,77,90)(17,72,124,76)(18,46,121,53)(20,86,120,31)(21,108,93,81)(22,113,97,118)(23,85,110,57)(25,75,126,49)(26,71,103,65)(27,119,51,58)(28,42,40,123)(29,106,73,60)(30,50,105,69)(32,92,54,82)(33,128,79,43)(39,96,111,74)(41,61,55,125)(45,68,80,101), (1,42,45,25)(2,9,20,22)(3,17,74,18)(4,8,6,13)(5,15,26,43)(7,102,76,65,29,100,34,101)(10,81,23,64)(11,57,48,68,31,16,72,71)(12,14,32,58)(19,52,50,53,59,95,94,51)(21,113,28,111,55,63,47,82)(24,35,40,39,37,69,36,92)(27,112,93,66,46,98,41,118)(30,61,56,60)(33,87,89,83,75,67,73,88)(38,119,70,126)(44,78,77,79,62,86,85,49)(54,114,80,124)(84,122,99,127)(90,120,97,125)(91,121,117,128)(96,123,103,109)(104,107,106,105)(108,110,116,115), (1,64,5,60)(2,26,13,45)(3,81,12,61)(4,18,9,58)(6,25,22,43)(7,85,29,77)(8,74,20,32)(10,14,30,17)(11,16,31,57)(15,56,42,23)(19,51,59,53)(21,94,55,50)(24,35,37,69)(27,92,46,39)(28,111,47,82)(33,71,75,68)(34,65,76,101)(36,98,40,112)(38,120,91,116)(41,66,93,118)(44,79,62,49)(48,87,72,67)(52,113,95,63)(54,122,96,106)(70,127,117,104)(73,88,89,83)(78,102,86,100)(80,125,103,108)(84,114,107,123)(90,119,110,121)(97,124,115,109)(99,126,105,128), (1,10,74,22)(2,17)(3,23,45,9)(4,12,56,26)(5,30,32,6)(7,34,78,79)(8,15)(11,33,73,72)(13,14)(18,64)(19,59)(20,42)(21,28,95,53)(24,27,93,40)(25,81)(29,76,86,49)(31,75,89,48)(35,69)(36,37,46,41)(38,97,96,105)(39,98,92,112)(43,61)(47,52,51,55)(50,113,94,63)(54,99,91,115)(58,60)(65,101)(67,71,87,68)(70,84,103,110)(77,102,85,100)(80,90,117,107)(83,88)(104,109,127,124)(106,121,122,119)(108,128,125,126)(114,116,123,120), (1,93,23,49)(2,113,104,118,81,50,125,35)(3,89,30,51)(4,76,74,37)(5,41,56,79)(6,28,26,31)(7,99,40,103,29,105,36,80)(8,102,120,83,60,85,106,57)(9,34,32,24)(10,53,12,73)(11,22,47,45)(13,63,127,66,61,94,108,69)(14,87,124,62,43,68,128,65)(15,98,114,19,58,39,121,111)(16,20,100,116,88,64,77,122)(17,67,109,44,25,71,126,101)(18,92,119,82,42,112,123,59)(21,90,48,54,55,110,72,96)(27,70,78,115,46,117,86,97)(33,38,52,84,75,91,95,107) );
 
Copy content sage:G = PermutationGroup(['(1,112,91,19)(2,52,104,24)(3,67,70,44)(4,102,84,88)(5,98,38,59)(6,63,115,66)(7,122,89,64)(8,78,116,11)(9,100,107,83)(10,94,99,35)(12,87,117,62)(13,95,127,37)(14,48,109,34)(15,36,114,47)(16,56,77,90)(17,72,124,76)(18,46,121,53)(20,86,120,31)(21,108,93,81)(22,113,97,118)(23,85,110,57)(25,75,126,49)(26,71,103,65)(27,119,51,58)(28,42,40,123)(29,106,73,60)(30,50,105,69)(32,92,54,82)(33,128,79,43)(39,96,111,74)(41,61,55,125)(45,68,80,101)', '(1,42,45,25)(2,9,20,22)(3,17,74,18)(4,8,6,13)(5,15,26,43)(7,102,76,65,29,100,34,101)(10,81,23,64)(11,57,48,68,31,16,72,71)(12,14,32,58)(19,52,50,53,59,95,94,51)(21,113,28,111,55,63,47,82)(24,35,40,39,37,69,36,92)(27,112,93,66,46,98,41,118)(30,61,56,60)(33,87,89,83,75,67,73,88)(38,119,70,126)(44,78,77,79,62,86,85,49)(54,114,80,124)(84,122,99,127)(90,120,97,125)(91,121,117,128)(96,123,103,109)(104,107,106,105)(108,110,116,115)', '(1,64,5,60)(2,26,13,45)(3,81,12,61)(4,18,9,58)(6,25,22,43)(7,85,29,77)(8,74,20,32)(10,14,30,17)(11,16,31,57)(15,56,42,23)(19,51,59,53)(21,94,55,50)(24,35,37,69)(27,92,46,39)(28,111,47,82)(33,71,75,68)(34,65,76,101)(36,98,40,112)(38,120,91,116)(41,66,93,118)(44,79,62,49)(48,87,72,67)(52,113,95,63)(54,122,96,106)(70,127,117,104)(73,88,89,83)(78,102,86,100)(80,125,103,108)(84,114,107,123)(90,119,110,121)(97,124,115,109)(99,126,105,128)', '(1,10,74,22)(2,17)(3,23,45,9)(4,12,56,26)(5,30,32,6)(7,34,78,79)(8,15)(11,33,73,72)(13,14)(18,64)(19,59)(20,42)(21,28,95,53)(24,27,93,40)(25,81)(29,76,86,49)(31,75,89,48)(35,69)(36,37,46,41)(38,97,96,105)(39,98,92,112)(43,61)(47,52,51,55)(50,113,94,63)(54,99,91,115)(58,60)(65,101)(67,71,87,68)(70,84,103,110)(77,102,85,100)(80,90,117,107)(83,88)(104,109,127,124)(106,121,122,119)(108,128,125,126)(114,116,123,120)', '(1,93,23,49)(2,113,104,118,81,50,125,35)(3,89,30,51)(4,76,74,37)(5,41,56,79)(6,28,26,31)(7,99,40,103,29,105,36,80)(8,102,120,83,60,85,106,57)(9,34,32,24)(10,53,12,73)(11,22,47,45)(13,63,127,66,61,94,108,69)(14,87,124,62,43,68,128,65)(15,98,114,19,58,39,121,111)(16,20,100,116,88,64,77,122)(17,67,109,44,25,71,126,101)(18,92,119,82,42,112,123,59)(21,90,48,54,55,110,72,96)(27,70,78,115,46,117,86,97)(33,38,52,84,75,91,95,107)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(10715740108751599555093307781189588940767873046894885015574743277270136585184349111322893534859415908891061395228591674250330242789285731701554082790281793253141136393666722831329514081399923852182155943458554635557434272044445834788087619809978151781516532064264461733785882196450368707009505340682911,16384)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.8; g = G.10; h = G.12; i = G.13;
 

Group information

Description:$C_2^7.C_2\wr D_4$
Order: \(16384\)\(\medspace = 2^{14} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(8\)\(\medspace = 2^{3} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2\times C_2^9.C_2^6.C_2^3$, of order \(524288\)\(\medspace = 2^{19} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 14
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Nilpotency class:$7$
Copy content comment:Nilpotency class of the group
 
Copy content magma:NilpotencyClass(G);
 
Copy content gap:NilpotencyClassOfGroup(G);
 
Copy content sage_gap:G.NilpotencyClassOfGroup()
 
Derived length:$3$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary).

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 4 8
Elements 1 767 9472 6144 16384
Conjugacy classes   1 37 91 22 151
Divisions 1 37 81 16 135
Autjugacy classes 1 29 54 6 90

Minimal presentations

Permutation degree:not computed
Transitive degree:not computed
Rank: $4$
Inequivalent generating quadruples: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 64 not computed not computed
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h, i \mid d^{4}=e^{2}=f^{4}=g^{4}=h^{2}=i^{4}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([14, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 129304, 203897, 71, 103658, 89070, 130595, 209457, 31055, 65453, 729124, 326498, 143672, 19506, 200, 712325, 388435, 6081, 86399, 834182, 65876, 233666, 13376, 56902, 80661, 10787, 5425, 2751, 763, 329, 1420169, 900503, 141157, 194371, 98065, 7919, 21373, 1787, 415, 650520, 49318, 24692, 12386, 387083, 975769, 430119, 215093, 110275, 12177, 6143, 3497, 1333708, 599898, 620296, 174046, 143484, 77250, 12472, 7390, 4506, 1258, 544, 1655821, 100379, 413993, 103557]); a,b,c,d,e,f,g,h,i := Explode([G.1, G.2, G.4, G.5, G.7, G.8, G.10, G.12, G.13]); AssignNames(~G, ["a", "b", "b2", "c", "d", "d2", "e", "f", "f2", "g", "g2", "h", "i", "i2"]);
 
Copy content gap:G := PcGroupCode(10715740108751599555093307781189588940767873046894885015574743277270136585184349111322893534859415908891061395228591674250330242789285731701554082790281793253141136393666722831329514081399923852182155943458554635557434272044445834788087619809978151781516532064264461733785882196450368707009505340682911,16384); a := G.1; b := G.2; c := G.4; d := G.5; e := G.7; f := G.8; g := G.10; h := G.12; i := G.13;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(10715740108751599555093307781189588940767873046894885015574743277270136585184349111322893534859415908891061395228591674250330242789285731701554082790281793253141136393666722831329514081399923852182155943458554635557434272044445834788087619809978151781516532064264461733785882196450368707009505340682911,16384)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.8; g = G.10; h = G.12; i = G.13;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(10715740108751599555093307781189588940767873046894885015574743277270136585184349111322893534859415908891061395228591674250330242789285731701554082790281793253141136393666722831329514081399923852182155943458554635557434272044445834788087619809978151781516532064264461733785882196450368707009505340682911,16384)'); a = G.1; b = G.2; c = G.4; d = G.5; e = G.7; f = G.8; g = G.10; h = G.12; i = G.13;
 
Permutation group:Degree $128$ $\langle(1,112,91,19)(2,52,104,24)(3,67,70,44)(4,102,84,88)(5,98,38,59)(6,63,115,66) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 128 | (1,112,91,19)(2,52,104,24)(3,67,70,44)(4,102,84,88)(5,98,38,59)(6,63,115,66)(7,122,89,64)(8,78,116,11)(9,100,107,83)(10,94,99,35)(12,87,117,62)(13,95,127,37)(14,48,109,34)(15,36,114,47)(16,56,77,90)(17,72,124,76)(18,46,121,53)(20,86,120,31)(21,108,93,81)(22,113,97,118)(23,85,110,57)(25,75,126,49)(26,71,103,65)(27,119,51,58)(28,42,40,123)(29,106,73,60)(30,50,105,69)(32,92,54,82)(33,128,79,43)(39,96,111,74)(41,61,55,125)(45,68,80,101), (1,42,45,25)(2,9,20,22)(3,17,74,18)(4,8,6,13)(5,15,26,43)(7,102,76,65,29,100,34,101)(10,81,23,64)(11,57,48,68,31,16,72,71)(12,14,32,58)(19,52,50,53,59,95,94,51)(21,113,28,111,55,63,47,82)(24,35,40,39,37,69,36,92)(27,112,93,66,46,98,41,118)(30,61,56,60)(33,87,89,83,75,67,73,88)(38,119,70,126)(44,78,77,79,62,86,85,49)(54,114,80,124)(84,122,99,127)(90,120,97,125)(91,121,117,128)(96,123,103,109)(104,107,106,105)(108,110,116,115), (1,64,5,60)(2,26,13,45)(3,81,12,61)(4,18,9,58)(6,25,22,43)(7,85,29,77)(8,74,20,32)(10,14,30,17)(11,16,31,57)(15,56,42,23)(19,51,59,53)(21,94,55,50)(24,35,37,69)(27,92,46,39)(28,111,47,82)(33,71,75,68)(34,65,76,101)(36,98,40,112)(38,120,91,116)(41,66,93,118)(44,79,62,49)(48,87,72,67)(52,113,95,63)(54,122,96,106)(70,127,117,104)(73,88,89,83)(78,102,86,100)(80,125,103,108)(84,114,107,123)(90,119,110,121)(97,124,115,109)(99,126,105,128), (1,10,74,22)(2,17)(3,23,45,9)(4,12,56,26)(5,30,32,6)(7,34,78,79)(8,15)(11,33,73,72)(13,14)(18,64)(19,59)(20,42)(21,28,95,53)(24,27,93,40)(25,81)(29,76,86,49)(31,75,89,48)(35,69)(36,37,46,41)(38,97,96,105)(39,98,92,112)(43,61)(47,52,51,55)(50,113,94,63)(54,99,91,115)(58,60)(65,101)(67,71,87,68)(70,84,103,110)(77,102,85,100)(80,90,117,107)(83,88)(104,109,127,124)(106,121,122,119)(108,128,125,126)(114,116,123,120), (1,93,23,49)(2,113,104,118,81,50,125,35)(3,89,30,51)(4,76,74,37)(5,41,56,79)(6,28,26,31)(7,99,40,103,29,105,36,80)(8,102,120,83,60,85,106,57)(9,34,32,24)(10,53,12,73)(11,22,47,45)(13,63,127,66,61,94,108,69)(14,87,124,62,43,68,128,65)(15,98,114,19,58,39,121,111)(16,20,100,116,88,64,77,122)(17,67,109,44,25,71,126,101)(18,92,119,82,42,112,123,59)(21,90,48,54,55,110,72,96)(27,70,78,115,46,117,86,97)(33,38,52,84,75,91,95,107) >;
 
Copy content gap:G := Group( (1,112,91,19)(2,52,104,24)(3,67,70,44)(4,102,84,88)(5,98,38,59)(6,63,115,66)(7,122,89,64)(8,78,116,11)(9,100,107,83)(10,94,99,35)(12,87,117,62)(13,95,127,37)(14,48,109,34)(15,36,114,47)(16,56,77,90)(17,72,124,76)(18,46,121,53)(20,86,120,31)(21,108,93,81)(22,113,97,118)(23,85,110,57)(25,75,126,49)(26,71,103,65)(27,119,51,58)(28,42,40,123)(29,106,73,60)(30,50,105,69)(32,92,54,82)(33,128,79,43)(39,96,111,74)(41,61,55,125)(45,68,80,101), (1,42,45,25)(2,9,20,22)(3,17,74,18)(4,8,6,13)(5,15,26,43)(7,102,76,65,29,100,34,101)(10,81,23,64)(11,57,48,68,31,16,72,71)(12,14,32,58)(19,52,50,53,59,95,94,51)(21,113,28,111,55,63,47,82)(24,35,40,39,37,69,36,92)(27,112,93,66,46,98,41,118)(30,61,56,60)(33,87,89,83,75,67,73,88)(38,119,70,126)(44,78,77,79,62,86,85,49)(54,114,80,124)(84,122,99,127)(90,120,97,125)(91,121,117,128)(96,123,103,109)(104,107,106,105)(108,110,116,115), (1,64,5,60)(2,26,13,45)(3,81,12,61)(4,18,9,58)(6,25,22,43)(7,85,29,77)(8,74,20,32)(10,14,30,17)(11,16,31,57)(15,56,42,23)(19,51,59,53)(21,94,55,50)(24,35,37,69)(27,92,46,39)(28,111,47,82)(33,71,75,68)(34,65,76,101)(36,98,40,112)(38,120,91,116)(41,66,93,118)(44,79,62,49)(48,87,72,67)(52,113,95,63)(54,122,96,106)(70,127,117,104)(73,88,89,83)(78,102,86,100)(80,125,103,108)(84,114,107,123)(90,119,110,121)(97,124,115,109)(99,126,105,128), (1,10,74,22)(2,17)(3,23,45,9)(4,12,56,26)(5,30,32,6)(7,34,78,79)(8,15)(11,33,73,72)(13,14)(18,64)(19,59)(20,42)(21,28,95,53)(24,27,93,40)(25,81)(29,76,86,49)(31,75,89,48)(35,69)(36,37,46,41)(38,97,96,105)(39,98,92,112)(43,61)(47,52,51,55)(50,113,94,63)(54,99,91,115)(58,60)(65,101)(67,71,87,68)(70,84,103,110)(77,102,85,100)(80,90,117,107)(83,88)(104,109,127,124)(106,121,122,119)(108,128,125,126)(114,116,123,120), (1,93,23,49)(2,113,104,118,81,50,125,35)(3,89,30,51)(4,76,74,37)(5,41,56,79)(6,28,26,31)(7,99,40,103,29,105,36,80)(8,102,120,83,60,85,106,57)(9,34,32,24)(10,53,12,73)(11,22,47,45)(13,63,127,66,61,94,108,69)(14,87,124,62,43,68,128,65)(15,98,114,19,58,39,121,111)(16,20,100,116,88,64,77,122)(17,67,109,44,25,71,126,101)(18,92,119,82,42,112,123,59)(21,90,48,54,55,110,72,96)(27,70,78,115,46,117,86,97)(33,38,52,84,75,91,95,107) );
 
Copy content sage:G = PermutationGroup(['(1,112,91,19)(2,52,104,24)(3,67,70,44)(4,102,84,88)(5,98,38,59)(6,63,115,66)(7,122,89,64)(8,78,116,11)(9,100,107,83)(10,94,99,35)(12,87,117,62)(13,95,127,37)(14,48,109,34)(15,36,114,47)(16,56,77,90)(17,72,124,76)(18,46,121,53)(20,86,120,31)(21,108,93,81)(22,113,97,118)(23,85,110,57)(25,75,126,49)(26,71,103,65)(27,119,51,58)(28,42,40,123)(29,106,73,60)(30,50,105,69)(32,92,54,82)(33,128,79,43)(39,96,111,74)(41,61,55,125)(45,68,80,101)', '(1,42,45,25)(2,9,20,22)(3,17,74,18)(4,8,6,13)(5,15,26,43)(7,102,76,65,29,100,34,101)(10,81,23,64)(11,57,48,68,31,16,72,71)(12,14,32,58)(19,52,50,53,59,95,94,51)(21,113,28,111,55,63,47,82)(24,35,40,39,37,69,36,92)(27,112,93,66,46,98,41,118)(30,61,56,60)(33,87,89,83,75,67,73,88)(38,119,70,126)(44,78,77,79,62,86,85,49)(54,114,80,124)(84,122,99,127)(90,120,97,125)(91,121,117,128)(96,123,103,109)(104,107,106,105)(108,110,116,115)', '(1,64,5,60)(2,26,13,45)(3,81,12,61)(4,18,9,58)(6,25,22,43)(7,85,29,77)(8,74,20,32)(10,14,30,17)(11,16,31,57)(15,56,42,23)(19,51,59,53)(21,94,55,50)(24,35,37,69)(27,92,46,39)(28,111,47,82)(33,71,75,68)(34,65,76,101)(36,98,40,112)(38,120,91,116)(41,66,93,118)(44,79,62,49)(48,87,72,67)(52,113,95,63)(54,122,96,106)(70,127,117,104)(73,88,89,83)(78,102,86,100)(80,125,103,108)(84,114,107,123)(90,119,110,121)(97,124,115,109)(99,126,105,128)', '(1,10,74,22)(2,17)(3,23,45,9)(4,12,56,26)(5,30,32,6)(7,34,78,79)(8,15)(11,33,73,72)(13,14)(18,64)(19,59)(20,42)(21,28,95,53)(24,27,93,40)(25,81)(29,76,86,49)(31,75,89,48)(35,69)(36,37,46,41)(38,97,96,105)(39,98,92,112)(43,61)(47,52,51,55)(50,113,94,63)(54,99,91,115)(58,60)(65,101)(67,71,87,68)(70,84,103,110)(77,102,85,100)(80,90,117,107)(83,88)(104,109,127,124)(106,121,122,119)(108,128,125,126)(114,116,123,120)', '(1,93,23,49)(2,113,104,118,81,50,125,35)(3,89,30,51)(4,76,74,37)(5,41,56,79)(6,28,26,31)(7,99,40,103,29,105,36,80)(8,102,120,83,60,85,106,57)(9,34,32,24)(10,53,12,73)(11,22,47,45)(13,63,127,66,61,94,108,69)(14,87,124,62,43,68,128,65)(15,98,114,19,58,39,121,111)(16,20,100,116,88,64,77,122)(17,67,109,44,25,71,126,101)(18,92,119,82,42,112,123,59)(21,90,48,54,55,110,72,96)(27,70,78,115,46,117,86,97)(33,38,52,84,75,91,95,107)'])
 
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $C_2^7$ . $(C_2\wr D_4)$ $(C_2^6:C_4)$ . $D_4^2$ (2) $C_2^7$ . $(C_2^4:D_4)$ $C_2^7$ . $(C_4^2:D_4)$ all 143
Aut. group: $\Aut(C_2^6.\OD_{16})$

Elements of the group are displayed as words in the presentation generators from the presentation above.

Homology

Abelianization: $C_{2}^{4} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{9}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $2$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 377 normal subgroups (211 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_2$ $G/Z \simeq$ $C_2^5.C_2^5.C_2^3$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_2^5.C_2^5$ $G/G' \simeq$ $C_2^4$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_2^5.C_2^5$ $G/\Phi \simeq$ $C_2^4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_2^7.C_2\wr D_4$ $G/\operatorname{Fit} \simeq$ $C_1$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_2^7.C_2\wr D_4$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2$ $G/\operatorname{soc} \simeq$ $C_2^5.C_2^5.C_2^3$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2^7.C_2\wr D_4$

Subgroup diagram and profile

Series

Derived series $C_2^7.C_2\wr D_4$ $\rhd$ $C_2^5.C_2^5$ $\rhd$ $C_2^4$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_2^7.C_2\wr D_4$ $\rhd$ $C_2^4.C_2^4.C_2^2:D_4$ $\rhd$ $C_2.C_2^6.C_2^5$ $\rhd$ $C_2^4.C_2^4.C_2^3$ $\rhd$ $C_2^5.C_2^5$ $\rhd$ $C_2^5.C_2^4$ $\rhd$ $C_2^5:C_2^3$ $\rhd$ $C_2^4.D_4$ $\rhd$ $D_4\times C_2^3$ $\rhd$ $C_2^3\times C_4$ $\rhd$ $C_2^4$ $\rhd$ $C_2^3$ $\rhd$ $C_2^2$ $\rhd$ $C_2$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_2^7.C_2\wr D_4$ $\rhd$ $C_2^5.C_2^5$ $\rhd$ $D_4\times C_2^3$ $\rhd$ $C_2^4$ $\rhd$ $C_2^3$ $\rhd$ $C_2^2$ $\rhd$ $C_2$ $\rhd$ $C_1$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_2$ $\lhd$ $C_2^3$ $\lhd$ $C_2^5$ $\lhd$ $C_2^7$ $\lhd$ $D_4.C_2^6$ $\lhd$ $C_2^5.C_2^6$ $\lhd$ $C_2^7.C_2\wr D_4$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

The $151 \times 151$ character table is not available for this group.

Rational character table

The $135 \times 135$ rational character table is not available for this group.