Subgroup ($H$) information
| Description: | $C_2^3:D_4$ | 
| Order: | \(64\)\(\medspace = 2^{6} \) | 
| Index: | \(16\)\(\medspace = 2^{4} \) | 
| Exponent: | \(4\)\(\medspace = 2^{2} \) | 
| Generators: | $\langle(1,5,2,6)(3,7,4,8)(9,13)(10,14)(11,15)(12,16), (3,4)(7,8)(9,10)(11,12)(13,14) \!\cdots\! \rangle$ | 
| Nilpotency class: | $2$ | 
| Derived length: | $2$ | 
The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), metabelian, and rational.
Ambient group ($G$) information
| Description: | $C_2^6.\OD_{16}$ | 
| Order: | \(1024\)\(\medspace = 2^{10} \) | 
| Exponent: | \(16\)\(\medspace = 2^{4} \) | 
| Nilpotency class: | $7$ | 
| Derived length: | $3$ | 
The ambient group is nonabelian and a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_2^7.C_2\wr D_4$, of order \(16384\)\(\medspace = 2^{14} \) | 
| $\operatorname{Aut}(H)$ | $C_2^9.S_4$, of order \(12288\)\(\medspace = 2^{12} \cdot 3 \) | 
| $\operatorname{res}(S)$ | $C_2^5:C_4$, of order \(128\)\(\medspace = 2^{7} \) | 
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(16\)\(\medspace = 2^{4} \) | 
| $W$ | $C_2^3$, of order \(8\)\(\medspace = 2^{3} \) | 
Related subgroups
Other information
| Number of subgroups in this autjugacy class | $8$ | 
| Number of conjugacy classes in this autjugacy class | $1$ | 
| Möbius function | $0$ | 
| Projective image | $(C_2^3\times C_4) . (C_2\times C_8)$ | 
