-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'ambient': '1024.dfb', 'ambient_counter': 2160, 'ambient_order': 1024, 'ambient_tex': 'C_2^6.\\OD_{16}', 'central': False, 'central_factor': False, 'centralizer_order': 16, 'characteristic': False, 'core_order': 4, 'counter': 37, 'cyclic': False, 'direct': None, 'hall': 0, 'label': '1024.dfb.16.q1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': False, 'minimal': False, 'minimal_normal': False, 'nilpotent': True, 'normal': False, 'old_label': '16.q1', 'outer_equivalence': True, 'perfect': False, 'proper': True, 'quotient': None, 'quotient_Agroup': None, 'quotient_abelian': None, 'quotient_cyclic': None, 'quotient_hash': None, 'quotient_metabelian': None, 'quotient_nilpotent': None, 'quotient_order': 16, 'quotient_simple': None, 'quotient_solvable': None, 'quotient_supersolvable': None, 'quotient_tex': None, 'simple': False, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '64.202', 'subgroup_hash': 202, 'subgroup_order': 64, 'subgroup_tex': 'C_2^3:D_4', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '1024.dfb', 'aut_centralizer_order': 16, 'aut_label': '16.q1', 'aut_quo_index': None, 'aut_stab_index': 8, 'aut_weyl_group': '128.2151', 'aut_weyl_index': 128, 'centralizer': '64.a1', 'complements': None, 'conjugacy_class_count': 1, 'contained_in': ['8.a1'], 'contains': ['32.n1', '32.o1', '32.q1', '32.v1', '32.w1', '32.y1', '32.ba1', '32.bd1', '32.bf1'], 'core': '256.a1', 'coset_action_label': None, 'count': 8, 'diagramx': [3073, -1, 3017, -1], 'generators': [5606275029696, 6227388847, 40279687, 126, 5167, 1313941673647], 'label': '1024.dfb.16.q1', 'mobius_quo': None, 'mobius_sub': 0, 'normal_closure': '8.a1', 'normal_contained_in': None, 'normal_contains': None, 'normalizer': '8.a1', 'old_label': '16.q1', 'projective_image': '512.1753', 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '16.q1', 'subgroup_fusion': None, 'weyl_group': '8.5'}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '16.14', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 4, 'aut_exponent': 24, 'aut_gen_orders': [8, 4], 'aut_gens': [[4001, 643, 2565, 1571, 3993], [517, 2727, 3623, 545, 687], [1957, 1575, 3623, 1571, 1561]], 'aut_group': '12288.dp', 'aut_hash': 1630168457023225010, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 12288, 'aut_permdeg': 24, 'aut_perms': [187522706853152502407387, 128367454260810836992011], 'aut_phi_ratio': 384.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 3, 1], [2, 1, 4, 1], [2, 2, 12, 1], [2, 4, 2, 1], [4, 4, 6, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_2^9.S_4', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 4, 'autcent_group': None, 'autcent_hash': 8092891664598236742, 'autcent_nilpotent': True, 'autcent_order': 2048, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^8.C_2^3', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 6, 'autcentquo_group': '6.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': False, 'autcentquo_order': 6, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'S_3', 'cc_stats': [[1, 1, 1], [2, 1, 7], [2, 2, 12], [2, 4, 2], [4, 4, 6]], 'center_label': '8.5', 'center_order': 8, 'central_product': True, 'central_quotient': '8.5', 'commutator_count': 1, 'commutator_label': '4.2', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1'], 'composition_length': 6, 'conjugacy_classes_known': True, 'counter': 202, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['2.1', 1], ['32.27', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 7], [2, 2, 1, 12], [2, 4, 1, 2], [4, 4, 1, 6]], 'element_repr_type': 'GLZq', 'elementary': 2, 'eulerian_function': 420, 'exponent': 4, 'exponents_of_order': [6], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2], 'faithful_reps': [], 'familial': False, 'frattini_label': '4.2', 'frattini_quotient': '16.14', 'hash': 202, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': False, 'inner_exponent': 2, 'inner_gen_orders': [2, 2, 1, 1, 2], 'inner_gens': [[4001, 643, 2565, 1571, 2731], [4001, 643, 2565, 1571, 2699], [4001, 643, 2565, 1571, 3993], [4001, 643, 2565, 1571, 3993], [2691, 1921, 2565, 1571, 3993]], 'inner_hash': 5, 'inner_nilpotent': True, 'inner_order': 8, 'inner_split': False, 'inner_tex': 'C_2^3', 'inner_used': [1, 2, 5], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 16], [2, 12]], 'label': '64.202', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 5, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C2^3:D4', 'ngens': 4, 'nilpotency_class': 2, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 6, 'number_characteristic_subgroups': 6, 'number_conjugacy_classes': 28, 'number_divisions': 28, 'number_normal_subgroups': 105, 'number_subgroup_autclasses': 38, 'number_subgroup_classes': 331, 'number_subgroups': 569, 'old_label': None, 'order': 64, 'order_factorization_type': 3, 'order_stats': [[1, 1], [2, 39], [4, 24]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 24, 'outer_gen_orders': [2, 3, 2, 2, 2, 2, 2, 2, 2, 2], 'outer_gen_pows': [513, 513, 513, 513, 513, 513, 513, 513, 513, 513], 'outer_gens': [[1575, 643, 2565, 545, 3993], [2695, 3619, 2565, 1539, 1593], [2723, 675, 2565, 1571, 1981], [4001, 643, 3623, 1571, 3993], [2723, 1921, 3591, 1571, 3993], [1957, 2695, 2565, 1571, 1981], [1957, 643, 2565, 1571, 3993], [4001, 1921, 2565, 1571, 3993], [4001, 1953, 2565, 1571, 3993], [2723, 643, 2565, 1571, 3993]], 'outer_group': '1536.408632814', 'outer_hash': 2972356385187470528, 'outer_nilpotent': False, 'outer_order': 1536, 'outer_permdeg': 14, 'outer_perms': [1683987865, 7878390024, 21317548327, 14390022966, 21797289414, 243538566, 85686, 2438997120, 21316418640, 2440489806], 'outer_solvable': True, 'outer_supersolvable': False, 'outer_tex': 'C_2^6:S_4', 'pc_rank': 5, 'perfect': False, 'permutation_degree': 10, 'pgroup': 2, 'primary_abelian_invariants': [2, 2, 2, 2], 'quasisimple': False, 'rank': 4, 'rational': True, 'rational_characters_known': True, 'ratrep_stats': [[1, 16], [2, 12]], 'representations': {'PC': {'code': 4564455696, 'gens': [1, 2, 3, 4, 5], 'pres': [6, 2, 2, 2, 2, 2, 2, 724, 730, 88]}, 'GLZ': {'b': 3, 'd': 5, 'gens': [705686951426, 141602720900, 706461793378, 706204576418]}, 'GLFp': {'d': 5, 'p': 2, 'gens': [11040833, 31029334, 19896385, 10743875, 6210625, 19208257]}, 'GLZq': {'d': 2, 'q': 8, 'gens': [643, 2565, 523, 545, 1539, 687]}, 'Perm': {'d': 10, 'gens': [367925, 766087, 85800, 806520, 806416, 806400]}}, 'schur_multiplier': [2, 2, 2, 2, 2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2, 2], 'solvability_type': 4, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_2^3:D_4', 'transitive_degree': 16, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '16.5', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 8, 'aut_gen_orders': [4, 8, 8, 4, 2, 4, 4, 2, 4], 'aut_gens': [[11212860971950, 2809471431606, 12526722806830], [19588164047976, 4110879219840, 20889651674856], [16825323109686, 9676790703064, 16825323104761], [14016025860606, 2809431877800, 15329966803326], [16825282825081, 4110918778801, 18126770451961], [11219088360545, 4117105877760, 12520495428065], [18126770457007, 2809471431727, 16825282830127], [11212861362606, 8369115972191, 12526722471726], [16819095726120, 4110879219961, 18132957561000], [16819095726006, 2803204489086, 18132957560886]], 'aut_group': '16384.mu', 'aut_hash': 4243906216982603733, 'aut_nilpotency_class': 7, 'aut_nilpotent': True, 'aut_order': 16384, 'aut_permdeg': 512, 'aut_perms': [93413372171683775697393264841231183620303051104354713304555907618646157533526072410581852163532211397830066594049648058260784070947546245718805731088609287281882702682432370791640182229914066048800525106689511607305144983718947740849828399346528409461346890916310705984210396116565314557011621442028848709500823765613707568630638049803261923260149141092237553648904076095125471036433156942789177621627044910868859947715645973528092557109737533682170582361565952455384972089283158588543442358205431075848272701522202790008128752888320247107487485149690326715570899236470423003384859970236647892739355396600728237229747290377312994117122877685897957370470088800121477310180602232221156936042742363087875547160567202000081301224803659744142611618820538228978965103601948716887710346028846557790270096093116109403097012542258516578507133735801490020789307925376059851662976818409813691647278803333937363064139704254653188254221253609799011948164683641378393446110275656642512541366201488246047155708758491361204312447577784392928915965081332131828843696275247702256165540146704819717122707600650735901316109116462700551055093420332511660106393555825260750286854820470479, 239350806708457017322322135285198626502372589006450014538257936697102513591775206875546908512204051501108723606701258598435916953524569172876562610042528868293887392434489130360516984210186630353942347489531854658209361027456711343522718161577363684583409982845245527126764471626993683431872429818000592720007305992494284702919455710128313128452218006868005046014248534702671875890486143690507305911157836038740950164557209038661044540712075897466233123156314085360178760714032959488412680139765463161564522789553858510161356692995576638683555259098925696002427712420552934359523480099555794063580731314203394160214185002350791318956984717220503024130829124521836758968094091450783624973491940259816494431488892556691196567680116284051328988003299121865638329045398084475101839373918465886448472554821412864192912933832555377835542320089067555631975680125071670496159646201192621552181382762633305255072389455570795753874518485489106598876133257016400285976973594587648518955605367237097040643727304861932170542530074203539111611780804756380909980811660455640995193392179206007955157996702987319942679586346813433890018721859341987414593772233020256879140834918335008, 261508218304954741156946895336343658406795097145361359821048798661614438449400615983315365229760664848063105488660343093061537068748218003145335018362369776984261788815068220857445341208764946849225652594300425468357520392900061818638569770635814826601213618004528034152138711229427495754095676557578816094403732517371710251138102037735445327843493987543165144886585778757312083981042365001110718583855702696632144728308872704281280804068216413436321812986940802468015153719694721518139741593216662105400338738436766732965794870426433098683430149265816588928527510368492938092540469600884925007613368700464872592057647800218191188955305792680475264680168413196744382967546171364814701753287150357974218202258149272874630226008941666032674929840371146980021799222396697852884532174008364245769991764400180327623726530766896942455066985362352022539791995226816120961297144325082182877244180085869432345476960252446380502428562104534781378820571556429407383542113041275593359082236013782253798393160093882882941877749086997091055001651689496673217408721736265758171169593131640707072867212083770843898005127372294200312118488346475830189930372194326563022983867131523638, 285479997661770763804903853708466241236626056058270403739754099165496203350502462391839517419992901344650495144056073509838664817206674724129375219295813661595270846290798369470656754546794720313454603379914430296679146392648249879411506868228235603184797158777131930335920522456251729108593461480128403517252621326012298691023563940538756675762360463292897751896101153406344907193204168038767041634071568533779732525053005544810735042106361732719898765587506302804050056928575634221316191871187431792591709110835808955869109464401770940717013207430745707942341676785159996104947028485574735880571907427540530034251704776733749340263027346887106349676881957099546063787139947377890203104806729883947412586679735148693613090256931083341538200749922414021737452671858743109219613913877588516317422884241817938911789821257355742350591279020037846873740609501440490196984778351876180008204175232093938807607466462443908159245070706179202650516216948968401368420323075249778499046117835143221048229403102737049053716603393352357525041614683097505633220046063599019248253735188725301917542133359047863792420319234364187531261396540324363955152374309024832632327981023398013, 144103802189032033189300962410632601521041370190984992837007205097644943996192578073808287688000387993309372891130212961303665430921204369391136837763210674619727447711024119987368537555483486871590018449862106533875657154008489087316210625797946799806409426520140074489352858912523902959659852168087893027673325094860529326167395588038719081196910432900899309443356319972724915874322931066331369417861945471781524571737157783631285824589784794902192743654225203463788884444344789879787302982079594000356900467833240029862571298028508603131660424836723410842794904734298073729244659216556540863709675899743178667160218125240012679535459740903634514579836008452896719337019764358680275655580428118167860025482017456200785505171466828062867990859185532692297334250026541882429663778114750852683152275262879268819161175274126689257731123530425288820118082943078271097695629158619903359292422444928622509095873267285874321670951436125130684799722856953408238347094601475912138261348246195830205949653480832614201868333048013400689019664813783771806620473303347607835645026511764891751018226525873870510659470352831089291591477935706278914246440927645910441483039751675840, 149806155125451444286954838219163664666521711953833175215928586579548114983194628220727866385742006127365336411632742182248752809883102426654689928330830068071705076954456142915856001503793624469224128463360567751314001278116256082931701004466242348231803644577067466784750345893824457419387103767924569480983609264960038296847799938315783852885553557325542681729025403540179872516182880906896044016598326061827885410962505040286405856030260647902665353049342086509733690645686376745576739767988167634117605385740226733697690444027570268636391133861100565285538235128882230698144211978438850922039574568217240139390735096090820989871467204084602030017317563166257076787031728011933006642954575880983336361831785063301498829225765285723044824623933741603669342391525478784353067832786355549276701612971956452679687587152977701177424267117514227049860098130436420850361499256453275802925671517922802189219816138230297440097421765458718662486330378216709415357489726364529613616116094994905724760725252349947965493893335867702231877590724370937269100524397938031112866680224286107460186854999798695029409203235483562184696664396315391702029929706349464422584924814383460, 90679791017302102906764072720875222454171272517016190519177326216287142407844034573211343996197359559636404153253536539440312446714748949017494960405521400483369201182228836619600735494248599174723584541850142853138687613215424628172521286972145688896089040636132294136272002179836806859802187556016473786799645275373310796137089461442059114485456450737017160065174434198348751676739994851045958910654929113844621961020599290219747858311500827560126801327548410979804608782892927722703296384984447311041194498904141583938808633015223554595009603973530418224343861889925550312225301100766126960116116848716360059563925909562430002455119259528539928104137766014205613847549691199074901531238062252675308671907357088611731745647671427727167611884564047868303657115719487810307747569132453991105892267419864105520397736956807273570854680706509649076000304991951851190704365698255302358962618739954134491624427635806340088302410316259672336932260970497404902776310021435460595808924519530186315485472441362917021860839838072065600419271041903806878762775505939252791395761223406767590989318043166604802324565852007913652285520637119600640362308199979952752504636968552427, 13298384143207559544452529732990081017829150890879139379079360663075135755072146096791086259031810481309727137003551554722246478168273693555142385439112806400471559643974128317875065787254506326569459381721735255744941644075127181149833295576050718863621382614412772731380921784258675889513884590656317544582266493603686165935373130023791831009329754957523987387913546367165574563625340457074732073387151445851306593668518529243792212881036848753468796583027313894043734595900624184428700366603805755185304575515896479030953892006766913573735049694398089003302355801001464214857746696657876880185950114040209212189710837277113600672138641292492844540086792067646884059964474162325818275186790740136993225064809604302023282648438703925551359886401205029606236959168177774298410944118010341933694250577815727906547923786193713808507975256918168279282345388904103724229352372743930107595737888700765717537397559826928905814042397910271069481801031265518966474019201277234738389974584851948144213801685729032245942083756672064657770638000120080862892097499568746319594622216174043842290391090928803895456763593243169875701642481204743058573466291583260220933955684512406, 45970134479708533474463688753616017594854124780288176974383862394712645756450310570030915673563174359474088135420933333082394893183354781654289726244220234443189679716109679822771285968780755235310212892050085667650914868060048709803183275093035994136876870045413751267224436724308133313173558499253767191994903827548196371104536983143107018214630407309909948570545563495599466236368174935744221117489489204820029073130463848924108899127005596713355086972926040720853150334653208026647453422436483674010924957582018541944599092384739047982788421901915018463695582768104470723020508927940628252365487565312701336748055474277216639899546193823561954973603143312983515867775180083152665803286402252702555447595819753805000379014381898097959652765343598942028620484898882981303952937635828585235066756308246160425310300712525576351254170826366300676581144957861815196694960388356992288660864769879649029626286763875327306420243559346615241207314986128676629750264580107168061467579913185332111800368178666414541882899472709453092936322354539257584050668814173225148186475772606097920363261189650874813300907117246851857395348579448390092351051433848293853577101488697177], 'aut_phi_ratio': 32.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 1], [2, 4, 1, 3], [2, 8, 2, 2], [2, 16, 1, 2], [4, 8, 2, 1], [4, 16, 8, 1], [4, 32, 1, 1], [4, 64, 1, 2], [8, 32, 4, 1], [16, 64, 8, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_2^7.C_2\\wr D_4', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '4.2', 'autcent_hash': 2, 'autcent_nilpotent': True, 'autcent_order': 4, 'autcent_solvable': True, 'autcent_split': False, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^2', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 8, 'autcentquo_group': None, 'autcentquo_hash': 2013466141039987713, 'autcentquo_nilpotent': True, 'autcentquo_order': 4096, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_2^6.C_2^4.C_2^2', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 2, 1], [2, 4, 3], [2, 8, 4], [2, 16, 2], [4, 8, 2], [4, 16, 8], [4, 32, 1], [4, 64, 2], [8, 32, 4], [16, 64, 8]], 'center_label': '2.1', 'center_order': 2, 'central_product': False, 'central_quotient': '512.1753', 'commutator_count': 1, 'commutator_label': '64.193', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1'], 'composition_length': 10, 'conjugacy_classes_known': True, 'counter': 2160, 'cyclic': False, 'derived_length': 3, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 1], [2, 4, 1, 3], [2, 8, 1, 4], [2, 16, 1, 2], [4, 8, 1, 2], [4, 16, 2, 4], [4, 32, 1, 1], [4, 64, 2, 1], [8, 32, 2, 2], [16, 64, 4, 2]], 'element_repr_type': 'Perm', 'elementary': 2, 'eulerian_function': 24, 'exponent': 16, 'exponents_of_order': [10], 'factors_of_aut_order': [2], 'factors_of_order': [2], 'faithful_reps': [[8, 0, 4], [8, 1, 4]], 'familial': False, 'frattini_label': '256.1535', 'frattini_quotient': '4.2', 'hash': 4903759005473243375, 'hyperelementary': 2, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 8, 'inner_gen_orders': [8, 4, 8], 'inner_gens': [[11212860971950, 9683057635504, 11212860976865], [16825323104640, 2809471431606, 18126730172160], [12526722811745, 9683057635504, 12526722806830]], 'inner_hash': 1436668582407764448, 'inner_nilpotent': True, 'inner_order': 512, 'inner_split': False, 'inner_tex': 'C_2^4.C_2^2:C_8', 'inner_used': [1, 2], 'irrC_degree': 8, 'irrQ_degree': 8, 'irrQ_dim': 8, 'irrR_degree': 8, 'irrep_stats': [[1, 16], [2, 4], [4, 6], [8, 10], [16, 1]], 'label': '1024.dfb', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': True, 'name': 'C2^6.OD16', 'ngens': 3, 'nilpotency_class': 7, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 17, 'number_characteristic_subgroups': 17, 'number_conjugacy_classes': 37, 'number_divisions': 24, 'number_normal_subgroups': 25, 'number_subgroup_autclasses': 330, 'number_subgroup_classes': 682, 'number_subgroups': 6665, 'old_label': None, 'order': 1024, 'order_factorization_type': 7, 'order_stats': [[1, 1], [2, 79], [4, 304], [8, 128], [16, 512]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 4, 'outer_gen_orders': [2, 2, 2, 4], 'outer_gen_pows': [121, 0, 1313941668480, 0], 'outer_gens': [[11212861357560, 9676830251945, 12526722466680], [11212860971950, 2809471426681, 12526722806830], [16825282830127, 2809471431727, 18126770457007], [19581977278086, 4110879224886, 19581977283241]], 'outer_group': '32.27', 'outer_hash': 27, 'outer_nilpotent': True, 'outer_order': 32, 'outer_permdeg': 8, 'outer_perms': [15966, 21048, 19342, 7277], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^2\\wr C_2', 'pc_rank': 6, 'perfect': False, 'permutation_degree': 16, 'pgroup': 2, 'primary_abelian_invariants': [2, 8], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 4], [4, 5], [8, 8], [16, 3]], 'representations': {'PC': {'code': '29759160622346366286547587349104150709157016332178734886503269069516847867099215', 'gens': [1, 4, 6, 7, 9, 10], 'pres': [10, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 20, 51, 3862, 39363, 5933, 6823, 113, 8804, 3614, 40325, 16335, 23526, 8416, 12346, 6476, 206, 51207, 24488, 18738, 17308, 4358, 1148]}, 'Perm': {'d': 16, 'gens': [11212860971950, 2809471431606, 12526722806830]}}, 'schur_multiplier': [2, 2], 'semidirect_product': False, 'simple': False, 'smith_abelian_invariants': [2, 8], 'solvability_type': 5, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_2^6.\\OD_{16}', 'transitive_degree': 16, 'wreath_data': None, 'wreath_product': False}