Properties

Label 1024.blt.512.c1.a1
Order $ 2 $
Index $ 2^{9} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2$
Order: \(2\)
Index: \(512\)\(\medspace = 2^{9} \)
Exponent: \(2\)
Generators: $\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), stem (hence central), a $p$-group, simple, and rational.

Ambient group ($G$) information

Description: $C_4^2.(C_8\times D_4)$
Order: \(1024\)\(\medspace = 2^{10} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Order: \(512\)\(\medspace = 2^{9} \)
Exponent: not computed
Automorphism Group: not computed
Outer Automorphisms: not computed
Nilpotency class: not computed
Derived length: not computed

Properties have not been computed

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^7.C_2^6.C_2^4$
$\operatorname{Aut}(H)$ $C_1$, of order $1$
$\card{W}$$1$

Related subgroups

Centralizer:$C_4^2.(C_8\times D_4)$
Normalizer:$C_4^2.(C_8\times D_4)$
Minimal over-subgroups:$C_2^2$$C_2^2$$C_2^2$$C_4$$C_4$$C_4$$C_4$$C_2^2$$C_2^2$$C_2^2$$C_4$$C_4$$C_4$
Maximal under-subgroups:$C_1$

Other information

Möbius function$0$
Projective image not computed