Properties

Label 1024.blt.256.h1.b1
Order $ 2^{2} $
Index $ 2^{8} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(256\)\(\medspace = 2^{8} \)
Exponent: \(2\)
Generators: $\left(\begin{array}{rr} 17 & 0 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is normal, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Ambient group ($G$) information

Description: $C_4^2.(C_8\times D_4)$
Order: \(1024\)\(\medspace = 2^{10} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Quotient group ($Q$) structure

Description: $C_4^2:\OD_{16}$
Order: \(256\)\(\medspace = 2^{8} \)
Exponent: \(8\)\(\medspace = 2^{3} \)
Automorphism Group: $C_2^7.C_2^5$
Outer Automorphisms: $C_2^5:D_4$, of order \(256\)\(\medspace = 2^{8} \)
Nilpotency class: $3$
Derived length: $2$

The quotient is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^7.C_2^6.C_2^4$
$\operatorname{Aut}(H)$ $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
$\card{W}$\(2\)

Related subgroups

Centralizer:$(C_2^2\times C_8).C_2^4$
Normalizer:$C_4^2.(C_8\times D_4)$
Minimal over-subgroups:$C_2^3$$C_2\times C_4$$C_2\times C_4$$C_2^3$$D_4$$C_2\times C_4$
Maximal under-subgroups:$C_2$$C_2$
Autjugate subgroups:1024.blt.256.h1.a1

Other information

Möbius function$0$
Projective image not computed