Properties

Label 1024.blt.256.bc1.a1
Order $ 2^{2} $
Index $ 2^{8} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_4$
Order: \(4\)\(\medspace = 2^{2} \)
Index: \(256\)\(\medspace = 2^{8} \)
Exponent: \(4\)\(\medspace = 2^{2} \)
Generators: $\left(\begin{array}{rr} 3 & 31 \\ 8 & 13 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group) and a $p$-group.

Ambient group ($G$) information

Description: $C_4^2.(C_8\times D_4)$
Order: \(1024\)\(\medspace = 2^{10} \)
Exponent: \(16\)\(\medspace = 2^{4} \)
Nilpotency class:$3$
Derived length:$2$

The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^7.C_2^6.C_2^4$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$\card{W}$\(2\)

Related subgroups

Centralizer:$C_2\times C_4\times C_8$
Normalizer:$D_4.C_4^2$
Normal closure:$C_4:Q_8$
Core:$C_2$
Minimal over-subgroups:$C_2\times C_4$$D_4$$D_4$$C_2\times C_4$$C_2\times C_4$$Q_8$$Q_8$
Maximal under-subgroups:$C_2$

Other information

Number of subgroups in this conjugacy class$8$
Möbius function$0$
Projective image not computed