Properties

Label 10000.em.20.c1
Order $ 2^{2} \cdot 5^{3} $
Index $ 2^{2} \cdot 5 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5:D_5^2$
Order: \(500\)\(\medspace = 2^{2} \cdot 5^{3} \)
Index: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $ad^{9}, b^{2}e, c^{2}, b^{5}cd^{9}, e$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_5^4$
Order: \(10000\)\(\medspace = 2^{4} \cdot 5^{4} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, and an A-group.

Quotient group ($Q$) structure

Description: $D_{10}$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Automorphism Group: $C_2\times F_5$, of order \(40\)\(\medspace = 2^{3} \cdot 5 \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_5^4:C_4\wr S_4$, of order \(3840000\)\(\medspace = 2^{11} \cdot 3 \cdot 5^{4} \)
$\operatorname{Aut}(H)$ $F_5\wr S_3$, of order \(48000\)\(\medspace = 2^{7} \cdot 3 \cdot 5^{3} \)
$W$$D_5^3$, of order \(1000\)\(\medspace = 2^{3} \cdot 5^{3} \)

Related subgroups

Centralizer:$D_5$
Normalizer:$D_5^4$
Complements:$D_{10}$ $D_{10}$ $D_{10}$ $D_{10}$ $D_{10}$ $D_{10}$ $D_{10}$ $D_{10}$
Minimal over-subgroups:$C_5\wr C_2^2$$D_5^3$$C_{10}:D_5^2$$D_5^3$
Maximal under-subgroups:$C_5^2:C_{10}$$D_5^2$

Other information

Number of subgroups in this autjugacy class$4$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$-10$
Projective image$D_5^4$