Properties

Label 1000.178.50.a1.b1
Order $ 2^{2} \cdot 5 $
Index $ 2 \cdot 5^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times C_{10}$
Order: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Index: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $c^{5}, b^{2}, b^{5}c^{2}d$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), elementary for $p = 2$ (hence hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $D_5^2:C_{10}$
Order: \(1000\)\(\medspace = 2^{3} \cdot 5^{3} \)
Exponent: \(20\)\(\medspace = 2^{2} \cdot 5 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_4\times F_5\wr C_2$, of order \(3200\)\(\medspace = 2^{7} \cdot 5^{2} \)
$\operatorname{Aut}(H)$ $C_4\times S_3$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)
$\operatorname{res}(S)$$C_2\times C_4$, of order \(8\)\(\medspace = 2^{3} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(8\)\(\medspace = 2^{3} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_2\times C_{10}$
Normalizer:$C_5\times D_4$
Normal closure:$C_5\times D_5^2$
Core:$C_5$
Minimal over-subgroups:$C_5\times D_{10}$$C_5\times D_4$
Maximal under-subgroups:$C_{10}$$C_{10}$$C_2^2$
Autjugate subgroups:1000.178.50.a1.a1

Other information

Number of subgroups in this conjugacy class$25$
Möbius function$1$
Projective image$D_5\wr C_2$