-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'ambient': '864.4704', 'ambient_counter': 4704, 'ambient_order': 864, 'ambient_tex': 'S_3\\times D_6^2', 'central': False, 'central_factor': True, 'centralizer_order': 4, 'characteristic': False, 'core_order': 216, 'counter': 13, 'cyclic': False, 'direct': True, 'hall': 0, 'label': '864.4704.4.g1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': False, 'minimal': False, 'minimal_normal': False, 'nilpotent': False, 'normal': True, 'old_label': '4.g1', 'outer_equivalence': True, 'perfect': False, 'proper': True, 'quotient': '4.2', 'quotient_Agroup': True, 'quotient_abelian': True, 'quotient_cyclic': False, 'quotient_hash': 2, 'quotient_metabelian': True, 'quotient_nilpotent': True, 'quotient_order': 4, 'quotient_simple': False, 'quotient_solvable': True, 'quotient_supersolvable': True, 'quotient_tex': 'C_2^2', 'simple': False, 'solvable': True, 'special_labels': [], 'split': True, 'standard_generators': False, 'stem': False, 'subgroup': '216.162', 'subgroup_hash': 162, 'subgroup_order': 216, 'subgroup_tex': 'S_3^3', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '864.4704', 'aut_centralizer_order': 6, 'aut_label': '4.g1', 'aut_quo_index': 1, 'aut_stab_index': 64, 'aut_weyl_group': '1296.3490', 'aut_weyl_index': 384, 'centralizer': '216.a1', 'complements': ['216.a1', '216.b1', '216.c1', '216.f1', '216.d1', '216.e1', '216.g1'], 'conjugacy_class_count': 64, 'contained_in': ['2.a1'], 'contains': ['8.e1', '8.f1', '8.g1', '12.p1'], 'core': '4.g1', 'coset_action_label': None, 'count': 64, 'diagramx': [6918, 1184, 8653, 1103], 'generators': [27611, 40966, 27601, 464783, 27451, 373141], 'label': '864.4704.4.g1', 'mobius_quo': 0, 'mobius_sub': 2, 'normal_closure': '4.g1', 'normal_contained_in': ['2.a1'], 'normal_contains': ['8.e1', '8.f1', '8.g1'], 'normalizer': '1.a1', 'old_label': '4.g1', 'projective_image': '864.4704', 'quotient_action_image': '1.1', 'quotient_action_kernel': '4.2', 'quotient_action_kernel_order': 4, 'quotient_fusion': None, 'short_label': '4.g1', 'subgroup_fusion': None, 'weyl_group': '216.162'}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '8.5', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 4, 'aut_exponent': 36, 'aut_gen_orders': [2, 2, 3, 2, 2, 3, 3, 3], 'aut_gens': [[42000, 1, 42744, 97224, 3, 136224], [42000, 1, 42744, 141240, 4, 102240], [42744, 1, 42000, 136224, 3, 97224], [1, 42744, 42000, 136224, 141240, 4], [42000, 1, 42744, 141240, 3, 102240], [42000, 1, 42744, 141240, 4, 136224], [42000, 1, 172320, 97224, 3, 136224], [42000, 5, 42744, 97224, 3, 136224], [178680, 1, 42744, 97224, 3, 136224]], 'aut_group': '1296.3490', 'aut_hash': 3490, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 1296, 'aut_permdeg': 9, 'aut_perms': [42888, 258684, 257955, 40710, 42624, 56280, 4467, 510], 'aut_phi_ratio': 18.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 3, 3, 1], [2, 9, 3, 1], [2, 27, 1, 1], [3, 2, 3, 1], [3, 4, 3, 1], [3, 8, 1, 1], [6, 6, 6, 1], [6, 12, 3, 1], [6, 18, 3, 1]], 'aut_supersolvable': False, 'aut_tex': 'S_3\\wr S_3', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 1, 'autcent_group': '1.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 1, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_1', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 36, 'autcentquo_group': '1296.3490', 'autcentquo_hash': 3490, 'autcentquo_nilpotent': False, 'autcentquo_order': 1296, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'S_3\\wr S_3', 'cc_stats': [[1, 1, 1], [2, 3, 3], [2, 9, 3], [2, 27, 1], [3, 2, 3], [3, 4, 3], [3, 8, 1], [6, 6, 6], [6, 12, 3], [6, 18, 3]], 'center_label': '1.1', 'center_order': 1, 'central_product': True, 'central_quotient': '216.162', 'commutator_count': 1, 'commutator_label': '27.5', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '3.1', '3.1', '3.1'], 'composition_length': 6, 'conjugacy_classes_known': True, 'counter': 162, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['6.1', 3]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 3, 1, 3], [2, 9, 1, 3], [2, 27, 1, 1], [3, 2, 1, 3], [3, 4, 1, 3], [3, 8, 1, 1], [6, 6, 1, 6], [6, 12, 1, 3], [6, 18, 1, 3]], 'element_repr_type': 'Perm', 'elementary': 1, 'eulerian_function': 1792, 'exponent': 6, 'exponents_of_order': [3, 3], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [[8, 1, 1]], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '216.162', 'hash': 162, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 6, 'inner_gen_orders': [2, 2, 2, 3, 3, 3], 'inner_gens': [[42000, 1, 42744, 97224, 3, 102240], [42000, 1, 42744, 97224, 4, 136224], [42000, 1, 42744, 141240, 3, 136224], [42000, 1, 219024, 97224, 3, 136224], [42000, 5, 42744, 97224, 3, 136224], [212664, 1, 42744, 97224, 3, 136224]], 'inner_hash': 162, 'inner_nilpotent': False, 'inner_order': 216, 'inner_split': True, 'inner_tex': 'S_3^3', 'inner_used': [1, 2, 3, 4, 5, 6], 'irrC_degree': 8, 'irrQ_degree': 8, 'irrQ_dim': 8, 'irrR_degree': 8, 'irrep_stats': [[1, 8], [2, 12], [4, 6], [8, 1]], 'label': '216.162', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 6, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'S3^3', 'ngens': 6, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 10, 'number_characteristic_subgroups': 5, 'number_conjugacy_classes': 27, 'number_divisions': 27, 'number_normal_subgroups': 38, 'number_subgroup_autclasses': 54, 'number_subgroup_classes': 162, 'number_subgroups': 904, 'old_label': None, 'order': 216, 'order_factorization_type': 33, 'order_stats': [[1, 1], [2, 63], [3, 26], [6, 126]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 6, 'outer_gen_orders': [2, 3], 'outer_gen_pows': [744, 745], 'outer_gens': [[42744, 1, 42000, 102240, 4, 97224], [1, 42744, 42000, 102240, 97224, 3]], 'outer_group': '6.1', 'outer_hash': 1, 'outer_nilpotent': False, 'outer_order': 6, 'outer_permdeg': 3, 'outer_perms': [1, 4], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'S_3', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 9, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2], 'quasisimple': False, 'rank': 3, 'rational': True, 'rational_characters_known': True, 'ratrep_stats': [[1, 8], [2, 12], [4, 6], [8, 1]], 'representations': {'PC': {'code': 6911122835010325191307, 'gens': [1, 2, 4, 6], 'pres': [6, -2, -2, -3, -2, -3, -3, 121, 31, 146, 729, 69, 730, 455]}, 'GLZ': {'b': 3, 'd': 6, 'gens': [125101743041088268, 91793126248314737, 125124617495221789]}, 'GLFp': {'d': 4, 'p': 3, 'gens': [24577758, 26172358, 1305911, 2939606, 14159168, 29360962]}, 'Perm': {'d': 9, 'gens': [42000, 1, 42744, 97224, 3, 136224]}}, 'schur_multiplier': [2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2], 'solvability_type': 7, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'S_3^3', 'transitive_degree': 12, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '32.51', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 4, 'aut_exponent': 36, 'aut_gen_orders': [6, 36, 12], 'aut_gens': [[27611, 27379, 805157, 27751, 715961], [297301, 534601, 805157, 513769, 310976], [32419, 391964, 715961, 534857, 783629], [297001, 40501, 796964, 373447, 535147]], 'aut_group': '497664.i', 'aut_hash': 7795797884732631937, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 497664, 'aut_permdeg': 36, 'aut_perms': [246787933640103821372925485412432292053217, 355294225826174445294504429932927929079677, 362728638386799870223687794249874829082776], 'aut_phi_ratio': 1728.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 3, 1], [2, 3, 12, 1], [2, 9, 12, 1], [2, 27, 4, 1], [3, 2, 3, 1], [3, 4, 3, 1], [3, 8, 1, 1], [6, 2, 9, 1], [6, 4, 9, 1], [6, 6, 24, 1], [6, 8, 3, 1], [6, 12, 12, 1], [6, 18, 12, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_6^3:C_2^2.S_4^2', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 12, 'autcent_group': '384.20164', 'autcent_hash': 20164, 'autcent_nilpotent': False, 'autcent_order': 384, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': False, 'autcent_tex': 'C_2^4:S_4', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 36, 'autcentquo_group': '1296.3490', 'autcentquo_hash': 3490, 'autcentquo_nilpotent': False, 'autcentquo_order': 1296, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'S_3\\wr S_3', 'cc_stats': [[1, 1, 1], [2, 1, 3], [2, 3, 12], [2, 9, 12], [2, 27, 4], [3, 2, 3], [3, 4, 3], [3, 8, 1], [6, 2, 9], [6, 4, 9], [6, 6, 24], [6, 8, 3], [6, 12, 12], [6, 18, 12]], 'center_label': '4.2', 'center_order': 4, 'central_product': True, 'central_quotient': '216.162', 'commutator_count': 1, 'commutator_label': '27.5', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '3.1', '3.1', '3.1'], 'composition_length': 8, 'conjugacy_classes_known': True, 'counter': 4704, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['2.1', 2], ['6.1', 3]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [2, 3, 1, 12], [2, 9, 1, 12], [2, 27, 1, 4], [3, 2, 1, 3], [3, 4, 1, 3], [3, 8, 1, 1], [6, 2, 1, 9], [6, 4, 1, 9], [6, 6, 1, 24], [6, 8, 1, 3], [6, 12, 1, 12], [6, 18, 1, 12]], 'element_repr_type': 'GLZN', 'elementary': 1, 'eulerian_function': 277760000, 'exponent': 6, 'exponents_of_order': [5, 3], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '864.4704', 'hash': 4704, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 6, 'inner_gen_orders': [2, 2, 3, 6, 3], 'inner_gens': [[27611, 27379, 805157, 27151, 715961], [27611, 27379, 464789, 27751, 715961], [27611, 373147, 805157, 27751, 715961], [27011, 27379, 805157, 27751, 310976], [27611, 27379, 805157, 40801, 715961]], 'inner_hash': 162, 'inner_nilpotent': False, 'inner_order': 216, 'inner_split': True, 'inner_tex': 'S_3^3', 'inner_used': [1, 2, 3, 4, 5], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 32], [2, 48], [4, 24], [8, 4]], 'label': '864.4704', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 6, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'S3*D6^2', 'ngens': 8, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 14, 'number_characteristic_subgroups': 7, 'number_conjugacy_classes': 108, 'number_divisions': 108, 'number_normal_subgroups': 628, 'number_subgroup_autclasses': 162, 'number_subgroup_classes': 3426, 'number_subgroups': 22400, 'old_label': None, 'order': 864, 'order_factorization_type': 33, 'order_stats': [[1, 1], [2, 255], [3, 26], [6, 582]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 12, 'outer_gen_orders': [2, 2, 3, 2, 3, 2], 'outer_gen_pows': [27001, 27001, 27089, 27001, 27001, 27001], 'outer_gens': [[27611, 27379, 805157, 783179, 310976], [27611, 27379, 805157, 513769, 715961], [27611, 513541, 643151, 27151, 121969], [783319, 783551, 805157, 783179, 121969], [783551, 783479, 391979, 32483, 297611], [783551, 783319, 783629, 33223, 715961]], 'outer_group': '2304.ez', 'outer_hash': 2138098037908021894, 'outer_nilpotent': False, 'outer_order': 2304, 'outer_permdeg': 12, 'outer_perms': [374578710, 189504870, 11480107, 365150077, 250528384, 1583399], 'outer_solvable': True, 'outer_supersolvable': False, 'outer_tex': 'C_2^6:S_3^2', 'pc_rank': 5, 'perfect': False, 'permutation_degree': 13, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2, 2, 2], 'quasisimple': False, 'rank': 5, 'rational': True, 'rational_characters_known': True, 'ratrep_stats': [[1, 32], [2, 48], [4, 24], [8, 4]], 'representations': {'PC': {'code': 2737945798467452556616810884464661525, 'gens': [1, 2, 3, 5, 7], 'pres': [8, -2, -2, -2, -3, -2, -3, -2, -3, 250, 66, 267, 4804, 116, 4613, 1718, 166, 1575]}, 'GLZ': {'b': 3, 'd': 6, 'gens': [125101729074815868, 24992906222183252, 125101746508740793, 91793129339160256, 108378800778161462]}, 'GLZN': {'d': 2, 'p': 30, 'gens': [27451, 27379, 386866, 40966, 297011, 513019, 32773, 27301]}, 'Perm': {'d': 13, 'gens': [40279680, 362887, 721, 1, 362880, 5760, 30, 518918400]}}, 'schur_multiplier': [2, 2, 2, 2, 2, 2, 2, 2, 2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2, 2, 2, 2], 'solvability_type': 7, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'S_3\\times D_6^2', 'transitive_degree': 48, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'abelian_quotient': '4.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 6, 'aut_gen_orders': [2, 3], 'aut_gens': [[1, 2], [3, 2], [2, 3]], 'aut_group': '6.1', 'aut_hash': 1, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 6, 'aut_permdeg': 3, 'aut_perms': [1, 4], 'aut_phi_ratio': 3.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 3, 1]], 'aut_supersolvable': True, 'aut_tex': 'S_3', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 6, 'autcent_group': '6.1', 'autcent_hash': 1, 'autcent_nilpotent': False, 'autcent_order': 6, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'S_3', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [2, 1, 3]], 'center_label': '4.2', 'center_order': 4, 'central_product': True, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1'], 'composition_length': 2, 'conjugacy_classes_known': True, 'counter': 2, 'cyclic': False, 'derived_length': 1, 'dihedral': True, 'direct_factorization': [['2.1', 2]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 1, 'exponent': 2, 'exponents_of_order': [2], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2], 'faithful_reps': [], 'familial': True, 'frattini_label': '1.1', 'frattini_quotient': '4.2', 'hash': 2, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1, 1], 'inner_gens': [[1, 2], [1, 2]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 4]], 'label': '4.2', 'linC_count': 3, 'linC_degree': 2, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 2, 'linQ_degree_count': 3, 'linQ_dim': 2, 'linQ_dim_count': 3, 'linR_count': 3, 'linR_degree': 2, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C2^2', 'ngens': 2, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 2, 'number_characteristic_subgroups': 2, 'number_conjugacy_classes': 4, 'number_divisions': 4, 'number_normal_subgroups': 5, 'number_subgroup_autclasses': 3, 'number_subgroup_classes': 5, 'number_subgroups': 5, 'old_label': None, 'order': 4, 'order_factorization_type': 2, 'order_stats': [[1, 1], [2, 3]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 6, 'outer_gen_orders': [2, 3], 'outer_gen_pows': [0, 0], 'outer_gens': [[3, 2], [2, 3]], 'outer_group': '6.1', 'outer_hash': 1, 'outer_nilpotent': False, 'outer_order': 6, 'outer_permdeg': 3, 'outer_perms': [1, 4], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'S_3', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 4, 'pgroup': 2, 'primary_abelian_invariants': [2, 2], 'quasisimple': False, 'rank': 2, 'rational': True, 'rational_characters_known': True, 'ratrep_stats': [[1, 4]], 'representations': {'PC': {'code': 0, 'gens': [1, 2], 'pres': [2, -2, 2]}, 'GLZ': {'b': 3, 'd': 2, 'gens': [14, 12]}, 'GLFp': {'d': 2, 'p': 3, 'gens': [55, 56]}, 'Perm': {'d': 4, 'gens': [6, 1]}}, 'schur_multiplier': [2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2], 'solvability_type': 1, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_2^2', 'transitive_degree': 4, 'wreath_data': None, 'wreath_product': False}