Properties

Label 864.4704.4.g1
Order $ 2^{3} \cdot 3^{3} $
Index $ 2^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3^3$
Order: \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)
Index: \(4\)\(\medspace = 2^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\left(\begin{array}{rr} 11 & 20 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 16 & 15 \\ 15 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 20 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 23 & 12 \\ 6 & 17 \end{array}\right), \left(\begin{array}{rr} 1 & 15 \\ 0 & 1 \end{array}\right), \left(\begin{array}{rr} 1 & 18 \\ 24 & 13 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, a direct factor, nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Ambient group ($G$) information

Description: $S_3\times D_6^2$
Order: \(864\)\(\medspace = 2^{5} \cdot 3^{3} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), metabelian, an A-group, and rational.

Quotient group ($Q$) structure

Description: $C_2^2$
Order: \(4\)\(\medspace = 2^{2} \)
Exponent: \(2\)
Automorphism Group: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), metacyclic, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^3:C_2^2.S_4^2$, of order \(497664\)\(\medspace = 2^{11} \cdot 3^{5} \)
$\operatorname{Aut}(H)$ $S_3\wr S_3$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
$\operatorname{res}(S)$$S_3\wr S_3$, of order \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$S_3^3$, of order \(216\)\(\medspace = 2^{3} \cdot 3^{3} \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$S_3\times D_6^2$
Complements:$C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$ $C_2^2$
Minimal over-subgroups:$C_2\times S_3^3$
Maximal under-subgroups:$C_3:S_3^2$$C_3\times S_3^2$$C_3:S_3^2$$S_3\times D_6$

Other information

Number of subgroups in this autjugacy class$64$
Number of conjugacy classes in this autjugacy class$64$
Möbius function$2$
Projective image$S_3\times D_6^2$