-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': True, 'ambient': '74112.g', 'ambient_counter': 7, 'ambient_order': 74112, 'ambient_tex': 'D_{193}:C_{192}', 'central': False, 'central_factor': False, 'centralizer_order': 384, 'characteristic': False, 'core_order': 6, 'counter': 44, 'cyclic': True, 'direct': None, 'hall': 0, 'label': '74112.g.386.b1.b1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': True, 'minimal': False, 'minimal_normal': False, 'nilpotent': True, 'normal': False, 'old_label': '386.b1.b1', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': None, 'quotient_Agroup': None, 'quotient_abelian': None, 'quotient_cyclic': None, 'quotient_hash': None, 'quotient_metabelian': None, 'quotient_nilpotent': None, 'quotient_order': 386, 'quotient_simple': None, 'quotient_solvable': None, 'quotient_supersolvable': None, 'quotient_tex': None, 'simple': False, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '192.2', 'subgroup_hash': 2, 'subgroup_order': 192, 'subgroup_tex': 'C_{192}', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '74112.g', 'aut_centralizer_order': None, 'aut_label': '386.b1', 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': '193.a1.a1', 'complements': None, 'conjugacy_class_count': 1, 'contained_in': ['2.b1.b1', '193.a1.a1'], 'contains': ['772.c1.a1', '1158.b1.b1'], 'core': '12352.a1.a1', 'coset_action_label': None, 'count': 193, 'diagramx': [971, -1, 1520, -1, 8697, -1, 8324, -1], 'generators': [99, 42320, 42264, 24704, 37056, 11718, 66060], 'label': '74112.g.386.b1.b1', 'mobius_quo': None, 'mobius_sub': 1, 'normal_closure': '2.b1.b1', 'normal_contained_in': None, 'normal_contains': None, 'normalizer': '193.a1.a1', 'old_label': '386.b1.b1', 'projective_image': '12352.1683', 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '386.b1.b1', 'subgroup_fusion': None, 'weyl_group': '1.1'}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': True, 'abelian_quotient': '192.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': True, 'aut_cyclic': False, 'aut_derived_length': 1, 'aut_exponent': 16, 'aut_gen_orders': [2, 2, 16], 'aut_gens': [[1], [65], [127], [133]], 'aut_group': '64.183', 'aut_hash': 183, 'aut_nilpotency_class': 1, 'aut_nilpotent': True, 'aut_order': 64, 'aut_permdeg': 20, 'aut_perms': [355687428096000, 121652215820507520, 121648016789608890], 'aut_phi_ratio': 1.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [3, 1, 2, 1], [4, 1, 2, 1], [6, 1, 2, 1], [8, 1, 4, 1], [12, 1, 4, 1], [16, 1, 8, 1], [24, 1, 8, 1], [32, 1, 16, 1], [48, 1, 16, 1], [64, 1, 32, 1], [96, 1, 32, 1], [192, 1, 64, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_2^2\\times C_{16}', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 16, 'autcent_group': '64.183', 'autcent_hash': 183, 'autcent_nilpotent': True, 'autcent_order': 64, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^2\\times C_{16}', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [2, 1, 1], [3, 1, 2], [4, 1, 2], [6, 1, 2], [8, 1, 4], [12, 1, 4], [16, 1, 8], [24, 1, 8], [32, 1, 16], [48, 1, 16], [64, 1, 32], [96, 1, 32], [192, 1, 64]], 'center_label': '192.2', 'center_order': 192, 'central_product': True, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '3.1'], 'composition_length': 7, 'conjugacy_classes_known': True, 'counter': 2, 'cyclic': True, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [['3.1', 1], ['64.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [3, 1, 2, 1], [4, 1, 2, 1], [6, 1, 2, 1], [8, 1, 4, 1], [12, 1, 4, 1], [16, 1, 8, 1], [24, 1, 8, 1], [32, 1, 16, 1], [48, 1, 16, 1], [64, 1, 32, 1], [96, 1, 32, 1], [192, 1, 64, 1]], 'element_repr_type': 'PC', 'elementary': 6, 'eulerian_function': 1, 'exponent': 192, 'exponents_of_order': [6, 1], 'factors_of_aut_order': [2], 'factors_of_order': [2, 3], 'faithful_reps': [[1, 0, 64]], 'familial': True, 'frattini_label': '32.1', 'frattini_quotient': '6.2', 'hash': 2, 'hyperelementary': 6, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1], 'inner_gens': [[1]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': 1, 'irrQ_degree': 64, 'irrQ_dim': 64, 'irrR_degree': 2, 'irrep_stats': [[1, 192]], 'label': '192.2', 'linC_count': 64, 'linC_degree': 1, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 34, 'linQ_degree_count': 2, 'linQ_dim': 34, 'linQ_dim_count': 2, 'linR_count': 32, 'linR_degree': 2, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C192', 'ngens': 7, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 14, 'number_characteristic_subgroups': 14, 'number_conjugacy_classes': 192, 'number_divisions': 14, 'number_normal_subgroups': 14, 'number_subgroup_autclasses': 14, 'number_subgroup_classes': 14, 'number_subgroups': 14, 'old_label': None, 'order': 192, 'order_factorization_type': 51, 'order_stats': [[1, 1], [2, 1], [3, 2], [4, 2], [6, 2], [8, 4], [12, 4], [16, 8], [24, 8], [32, 16], [48, 16], [64, 32], [96, 32], [192, 64]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 16, 'outer_gen_orders': [2, 2, 16], 'outer_gen_pows': [0, 0, 0], 'outer_gens': [[65], [127], [133]], 'outer_group': '64.183', 'outer_hash': 183, 'outer_nilpotent': True, 'outer_order': 64, 'outer_permdeg': 20, 'outer_perms': [355687428096000, 121652215820507520, 121648016789608890], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^2\\times C_{16}', 'pc_rank': 1, 'perfect': False, 'permutation_degree': 67, 'pgroup': 0, 'primary_abelian_invariants': [64, 3], 'quasisimple': False, 'rank': 1, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 2], [2, 3], [4, 2], [8, 2], [16, 2], [32, 2], [64, 1]], 'representations': {'PC': {'code': 4553336054269763133313, 'gens': [1], 'pres': [7, -2, -2, -2, -2, -2, -2, -3, 14, 36, 58, 80, 102, 124]}, 'GLFp': {'d': 2, 'p': 31, 'gens': [119074]}, 'Perm': {'d': 67, 'gens': [34812819462234954428607685341897082192301945708552738688865836491528209085355972467097600000000, 4, 17125731743961598921943674325579392227242124480672411041416803851981460023914660624295657472000, 8282187884824921168611668818381987555972846584752266182758164987540677113354309924032688179200, 3860415955256618126428729875983775624818504154288173718968029842331521501914651066812729456320, 1649530213841581475001430175259373643701598531447003215154104016101461640635225996085127825760, 544471857487925546941072384503952816534977960565454352280865841524404515036981945541028258664]}}, 'schur_multiplier': [], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [192], 'solvability_type': 0, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{192}', 'transitive_degree': 192, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '384.563', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 37056, 'aut_gen_orders': [16, 192, 192, 192, 48], 'aut_gens': [[1, 32], [42049, 20576], [49089, 35872], [42529, 2336], [20769, 35872], [14721, 38944]], 'aut_group': None, 'aut_hash': 2047870114700848400, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 592896, 'aut_permdeg': 774, 'aut_perms': [10996528664321553377498738209554301080142178642436820883825587250848098279260555896790722627056241308738506394277966400075500714791112935388605701928072222653241318645032003327329860137166298309992654274083990133905527449468890160025161132622387275995982477057295546818155820371548579848382429953044485093940114426675758898400724592018563185033762037653043993074114479120486987888630384169653434253408987494921709318151380379731884291687868090003355710749979838800309820051873374646925093726165417237823464816834798859285810070808504617452630701486796739738759201385989628060747303530716215889975373641658859726015729715263759622471407041527863638766972632424889347488813912063524188690164358616254915574009100458111437937660218412936705710571534132820314365374333883890543683841611578840277561374325889334433338434938468731917461426706433535887464209912006331685193200154878390107022799222532098728426184539583049381526902741013880033148606346781963788742435289166772252272738689202986545235991277761126690805878456809356955039983234772854236437233858736888044703389751601012244693036304264019165314095947717869415775431490340208900695865281686187915858532718951557849324098550723884203453214768530150158177119838658073346357862804670966875661396492449044533980640213137457126180425770571979998979964087583901924362283022543395487908499221638324481546637911403469251634546653644017581068020916240196449456720597160767367108592756535742239194113887138597928734073329184820730241063010057288962522137941744407173537327794170843469651246263020940676991236524897269807586532109620310648799572824639862767343467123306899257425655482487741898992214097691871816389434158797023828787200679810430721291221545091903422506799059975652807349108078250084379257049333036637329447979898805896090776714514638397375169172744179783202560445570081319286481518759746469591310872635167035544460788480841122398680932826, 156947779616146581143653308875374629481794130168770499528487106840035636524444907156698803861701610022430917633385614335894755494081399650205522183120513723285979178348727499925641129141004074831098276594807244169239500465155069935886227155117449029177799902246367007320944087108748688492823654743128938593370127698336769065762742795859391255943897038626420822008799783194461700304286461487228296780742898188750776699600884384034493787229237872500417765044791205244244068312255269005157505516667820049407557122925701402628578048233716831553109088633920685390136513380359274748675528686405984244944079129020639899934920835568865889873638644288416874732200380712475523718103724387126421582102453821537045535474227058795709559191188321280248365030015615054021278275436708366596984776245206204875542627250491326645257895708430789580393682179003843028119661187193357939408490207463989384098100245537752819100973995905898163628047622706420246388613162411909838702460201819044965750936863303314625625817216234819418212313728614768829471500859619842138495446016345181229592654632548377888680730816388286300619311653539457699883311607981618050130356168638663555936267953927178576652489438943918047063254892736261019299006224615008722504553611027099195148687481005673431298332400722936384178954963449585816067171325396460867158746566764768296443684185251497605609208594628425678582872566084802306772797473960654318773854172593692791845467109819888030208289871341100029981509181284801839919178408474773791636748702525864520066897483698282386358455191227412780743405010533892810210862200299764735330701605253439487908923892735245615836568862760193069789673772626701451857753343280937962520222945678037129892197761432082797618532450321371664142614840167721064970005042031948388056168494492228338597996440251010507418246100496955355201438637108561589639376762458090530397323712817657697065136626463017325846140093549, 147531411129482828035280397082318810656709412956183976137501287706403817531202505183596973642115214044291290174714175412177429105887444612027516152243534898240331035214584723122913489600242901674044630072541279282027429304086208759290276120896857272038741183533029979395478177371055420641925020254308234723003160169170585947605420052329119674392993936022086685064719173331082959237138401803900281051651214458401830054605362200566635316061972830590496085785492450974931289771549879632786441557083657010960861761461103528193039911295963066012255820563836334995893007131410020679487109906066956626906564441014226188354385817714136139986282979661522022452702094548195011877824125567561604805062149549679810350354375660251301984671701787994441230289107769063979273216812987226883782253351131160547472837616408754633428187240401659347801554958718328248381370207186374649275128784684029694897569761556749840418498741900151080475714697961719361314695038754191919791684527502497223239907897736703713548304813549946436289148227628146426079268070911483830329729848958833224501399421342681517732892273125198928043752157698608077640983416725528863886257309456048588475002383879625950169650617387665509499560914194471769255040656978784527984381945360270762624278913939684323005826180403803946710739800800345084144227549995874765288625337210566878184563241536011027722464466075715071164524804035164983792757657860852192214990496704815408155084082662345847080617241124473399216869234120390381684181770896164615022825338184505458777011879779283855358181132345186493057256487402398125523472078709295140578604583547228893916848634771417762007194140787719569722348100879821660445948798651286395121909526090073038061916325227196537365778276416482740383493830535032669415843246823574367362100338165902869992025946537237540399175800622988327433709367572980365929758746355968310949833840965773179960310804054045338236398090, 156761755465006709474423768074793783983813370000580640788572288069081078915998002807989621895559939943543033222257173551773991028995039057536479507271865025635528622124316731184762736388214962008994489539672951333924018363156876970969735836034621265675985618604164282247899711521316037551838708472244214922257115817571079026998928008393449354188735911756901890932681889899894374751811932847772632049463200186798285266339108290226611643728214232600676636523171852874141857809856310248336965844648910648675745860057712428914309425476305431273776476899512211953255070193590982950700358086188139431609127334492484706896943724200306096878583539921862466835113048688088151349368867986909505488158428401381105708275798433757106849878818073212004296353438278285900546239031011551968723694855040307603760131439263521706000833494939644433954527977282123091597359861695507878151423080822176025267633651103744165476650060801024339679812760981614569905726256572387346349729989959634556188312203423942939052791260054022680596520909914146278857608912111228473455548056093483127460614296494303974508280858779056301841355950512702394012490177201878186143155340999361328951751762419684971131606322909730350296299040024357163199744181590565538532576787734063226200035377934492036165209767348715879675181499389807971370134036831305443015990827893216625363231617272964342161432950407187735196348472724500745740630802767183825321585194432885274273688414906072905395123529144859128655776689076432922292875586929536106268915708350407419422483310694405927119918192511538319640781285582488423181870739620746753248047864865648409350047798719307724049912909621644976077809228281589700992450261588026438724882644801150453201851139576765853929573056070907364919682408647248695269667429604622152062386285649665053863008044205999291854736211309090066457773599008911342973551576358816648336772467522117363927520064543556851202978776279, 156553931059624569208018338206128013642690845859271414509017023601997240081422706040128741729262419834317366848270880370422828330936014329675161913114652643752910947124718111914032296434027436619466942144896943333415585894002224896485974131201683242210953973576718117016375365657120555631864103677244074021906226943606302764215418641451783930120781080886869337202575497630981722975787858736403422255121134647502001344338026889254190263186060470717667439809775445567454661499323314038509205509956574782433634481327017792577491775394749312459273600204491088546992604634484169453445772191676383356907424636823352478799904935474770146966871134320176863131195276030016483489360165007423251136170178156469545481855938759757979071265160102417206102506078006632557082027396664279296515854966949034430087638219518239960111160003728771251767055010325531560153223575899018104542739208811316799006908582314544249837817071369015958617523515580610136186924132780252246752806345449825260502592869328928921087817504507289922613261966701890508947338247263707915034472903507522653163688232558146797670238594389951496817439528817722134958687891970822008554501105719018227920278914899784134417991105525809679899722156771849359043492779587816819085365784208340458177312557302563015242343348997417409673409702360808702628586322219263458937502003972068512698512828542679263729823161060882151311879197440603455349397454232935928359558197717009777675380349252028128849167215090676768460621058629762703172599875678988321079696051634503421265114431739410496844558811782670111291939811216279819169656383378442915330382355645098234873442669051326642716358539951826575033970910382378510573417888889150202235971434806956165438851384822409574457660380132974449376255447285762232271170000584194833331948255508687267377441915859487557942958552861394367291411543171384903790251053027187767096078305115452768263297109185998876591473976945], 'aut_phi_ratio': 24.125, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 193, 2, 1], [3, 1, 2, 1], [4, 1, 2, 1], [4, 193, 1, 2], [6, 1, 2, 1], [6, 193, 4, 1], [8, 193, 1, 4], [8, 193, 2, 2], [12, 1, 4, 1], [12, 193, 2, 2], [16, 193, 1, 8], [16, 193, 2, 4], [24, 193, 2, 4], [24, 193, 4, 2], [32, 193, 2, 16], [48, 193, 2, 8], [48, 193, 4, 4], [64, 193, 4, 16], [96, 193, 4, 16], [192, 193, 8, 16], [193, 32, 6, 1], [386, 32, 6, 1], [579, 32, 12, 1], [772, 32, 12, 1], [1158, 32, 12, 1], [2316, 32, 24, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_{386}.C_{96}.C_2^4', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 4, 'autcent_group': '16.11', 'autcent_hash': 11, 'autcent_nilpotent': True, 'autcent_order': 16, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2\\times D_4', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 37056, 'autcentquo_group': '37056.a', 'autcentquo_hash': 1432757702296672986, 'autcentquo_nilpotent': False, 'autcentquo_order': 37056, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'F_{193}', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 193, 2], [3, 1, 2], [4, 1, 2], [4, 193, 2], [6, 1, 2], [6, 193, 4], [8, 193, 8], [12, 1, 4], [12, 193, 4], [16, 193, 16], [24, 193, 16], [32, 193, 32], [48, 193, 32], [64, 193, 64], [96, 193, 64], [192, 193, 128], [193, 32, 6], [386, 32, 6], [579, 32, 12], [772, 32, 12], [1158, 32, 12], [2316, 32, 24]], 'center_label': '12.2', 'center_order': 12, 'central_product': True, 'central_quotient': '6176.247', 'commutator_count': 1, 'commutator_label': '193.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '3.1', '193.1'], 'composition_length': 9, 'conjugacy_classes_known': True, 'counter': 7, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['24704.21814', 1], ['3.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 193, 1, 2], [3, 1, 2, 1], [4, 1, 2, 1], [4, 193, 2, 1], [6, 1, 2, 1], [6, 193, 2, 2], [8, 193, 4, 2], [12, 1, 4, 1], [12, 193, 4, 1], [16, 193, 8, 2], [24, 193, 8, 2], [32, 193, 16, 2], [48, 193, 16, 2], [64, 193, 32, 2], [96, 193, 32, 2], [192, 193, 64, 2], [193, 32, 6, 1], [386, 32, 6, 1], [579, 32, 12, 1], [772, 32, 12, 1], [1158, 32, 12, 1], [2316, 32, 24, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 3072, 'exponent': 37056, 'exponents_of_order': [7, 1, 1], 'factors_of_aut_order': [2, 3, 193], 'factors_of_order': [2, 3, 193], 'faithful_reps': [[32, 0, 24]], 'familial': False, 'frattini_label': '2.1', 'frattini_quotient': '37056.r', 'hash': 6586773659675919904, 'hyperelementary': 2, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 6176, 'inner_gen_orders': [32, 193], 'inner_gens': [[1, 6944], [67201, 32]], 'inner_hash': 247, 'inner_nilpotent': False, 'inner_order': 6176, 'inner_split': False, 'inner_tex': 'C_{193}:C_{32}', 'inner_used': [1, 2], 'irrC_degree': 32, 'irrQ_degree': 768, 'irrQ_dim': 768, 'irrR_degree': 64, 'irrep_stats': [[1, 384], [32, 72]], 'label': '74112.g', 'linC_count': 24, 'linC_degree': 32, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 226, 'linQ_degree_count': 16, 'linQ_dim': 226, 'linQ_dim_count': 16, 'linR_count': 768, 'linR_degree': 34, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'D193:C192', 'ngens': 9, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 118, 'number_characteristic_subgroups': 38, 'number_conjugacy_classes': 456, 'number_divisions': 34, 'number_normal_subgroups': 46, 'number_subgroup_autclasses': 72, 'number_subgroup_classes': 80, 'number_subgroups': 6608, 'old_label': None, 'order': 74112, 'order_factorization_type': 311, 'order_stats': [[1, 1], [2, 387], [3, 2], [4, 388], [6, 774], [8, 1544], [12, 776], [16, 3088], [24, 3088], [32, 6176], [48, 6176], [64, 12352], [96, 12352], [192, 24704], [193, 192], [386, 192], [579, 384], [772, 384], [1158, 384], [2316, 768]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 12, 'outer_gen_orders': [2, 2, 2, 12], 'outer_gen_pows': [0, 5, 5, 61782], 'outer_gens': [[24705, 37024], [61761, 39328], [6177, 59488], [6177, 25888]], 'outer_group': '96.221', 'outer_hash': 221, 'outer_nilpotent': True, 'outer_order': 96, 'outer_permdeg': 11, 'outer_perms': [2424, 1680, 40320, 11612164], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_{12}:C_2^3', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 260, 'pgroup': 0, 'primary_abelian_invariants': [2, 64, 3], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 6], [4, 4], [8, 4], [16, 4], [32, 4], [64, 2], [192, 2], [384, 3], [768, 1]], 'representations': {'PC': {'code': '365644094072947909894236552328535569515916202899457241062082746986993595775394582645118793487688647782911948228437052420822502342088632839277002784515931219220230046079', 'gens': [1, 6], 'pres': [9, -2, -2, -2, -2, -2, -2, -2, -3, -193, 18, 46, 74, 102, 34780, 374981, 664430, 337415, 184280, 41621, 158, 874950, 1550319, 787272, 429945, 97062, 186, 1999879, 875536, 465433, 315682, 221803, 286, 746504, 2954897, 70010, 314963, 373292]}, 'GLFp': {'d': 2, 'p': 193, 'gens': [7189251, 1006468143, 64701556]}, 'Perm': {'d': 260, 'gens': [14845286375451794187549058706076011061126241263109602856314650407918283614350873888563207346615447013224354468990533812343270799015556647556189472144596813951556254664023927520818327727351953438375301288335022290489917858127270383666487806715296278532196442714167850865697835507750861081546040136052497789221246936886977956170130476552198803949466557440955029103119148999612000438314038752876079836319387868488516107098642505531293953376520930832220886389634906046730532750160216955962511059048202240000000000000000, 171524956777218344906295377373569570087762386517359592377726532303122536359252947798762469585345530270727824782053991494377159740892842370800708584401864734221148838924691593740403350700529159934418962183375175926430399312725081359694887973335308378657343007109070469543549887994001184691548858666013402981619287319075578068153196885362769857052594489248541435356544734700482274900542242000598204753807342804465139998295374178068052073126228696315436395830808893071262570145815968027479768889298448501253103768984, 228845238607050044888128047258240248409125599860769090121938918889539905911282805399878329908925433669152220524336995064314921468459188395879757330213406897829109162510371139686656746650791571253432241827938468608171773105113021859635674899199361525223294373014247950197247462545131599170970182271502121935874903528237517425069168928138970188994969636015725089892961942515383472789524462034831576671833410592076455309102026290127876012099021400198569829282259681841557537120957197727194754019520431717333108348163]}}, 'schur_multiplier': [2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 192], 'solvability_type': 6, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'D_{193}:C_{192}', 'transitive_degree': 37056, 'wreath_data': None, 'wreath_product': False}