Properties

Label 74112.g.386.b1.b1
Order $ 2^{6} \cdot 3 $
Index $ 2 \cdot 193 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{192}$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Index: \(386\)\(\medspace = 2 \cdot 193 \)
Exponent: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Generators: $a^{3}b^{3}, a^{16}b^{1322}, a^{24}b^{1320}, b^{772}, b^{1158}, a^{6}b^{366}, a^{12}b^{2064}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $D_{193}:C_{192}$
Order: \(74112\)\(\medspace = 2^{7} \cdot 3 \cdot 193 \)
Exponent: \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \)
Derived length:$2$

The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{386}.C_{96}.C_2^4$
$\operatorname{Aut}(H)$ $C_2^2\times C_{16}$, of order \(64\)\(\medspace = 2^{6} \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_2\times C_{192}$
Normalizer:$C_2\times C_{192}$
Normal closure:$C_{193}:C_{192}$
Core:$C_6$
Minimal over-subgroups:$C_{193}:C_{192}$$C_2\times C_{192}$
Maximal under-subgroups:$C_{96}$$C_{64}$
Autjugate subgroups:74112.g.386.b1.a1

Other information

Number of subgroups in this conjugacy class$193$
Möbius function$1$
Projective image$C_{386}:C_{32}$