Subgroup ($H$) information
| Description: | $C_{192}$ |
| Order: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| Index: | \(386\)\(\medspace = 2 \cdot 193 \) |
| Exponent: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
| Generators: |
$a^{3}b^{3}, a^{16}b^{1322}, a^{24}b^{1320}, b^{772}, b^{1158}, a^{6}b^{366}, a^{12}b^{2064}$
|
| Nilpotency class: | $1$ |
| Derived length: | $1$ |
The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Ambient group ($G$) information
| Description: | $D_{193}:C_{192}$ |
| Order: | \(74112\)\(\medspace = 2^{7} \cdot 3 \cdot 193 \) |
| Exponent: | \(37056\)\(\medspace = 2^{6} \cdot 3 \cdot 193 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_{386}.C_{96}.C_2^4$ |
| $\operatorname{Aut}(H)$ | $C_2^2\times C_{16}$, of order \(64\)\(\medspace = 2^{6} \) |
| $W$ | $C_1$, of order $1$ |
Related subgroups
Other information
| Number of subgroups in this conjugacy class | $193$ |
| Möbius function | $1$ |
| Projective image | $C_{386}:C_{32}$ |