-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'ambient': '65536.p', 'ambient_counter': 16, 'ambient_order': 65536, 'ambient_tex': 'C_{256}.D_{128}', 'central': False, 'central_factor': False, 'centralizer_order': None, 'characteristic': False, 'core_order': 512, 'counter': 173, 'cyclic': False, 'direct': None, 'hall': 0, 'label': '65536.p.64._.BO', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': False, 'minimal': False, 'minimal_normal': False, 'nilpotent': True, 'normal': False, 'old_label': '64.BO', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': None, 'quotient_Agroup': None, 'quotient_abelian': None, 'quotient_cyclic': None, 'quotient_hash': None, 'quotient_metabelian': None, 'quotient_nilpotent': None, 'quotient_order': 64, 'quotient_simple': None, 'quotient_solvable': None, 'quotient_supersolvable': None, 'quotient_tex': None, 'simple': False, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '1024.dco', 'subgroup_hash': None, 'subgroup_order': 1024, 'subgroup_tex': 'C_8.D_{64}', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '65536.p', 'aut_centralizer_order': None, 'aut_label': None, 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': None, 'complements': None, 'conjugacy_class_count': 1, 'contained_in': None, 'contains': None, 'core': None, 'coset_action_label': None, 'count': 2, 'diagramx': None, 'generators': [1374942198, 1052424966, 4345495809, 1086374205, 4226673689, 15726601, 2308544888, 4090876929, 4090876914, 4345496064], 'label': '65536.p.64._.BO', 'mobius_quo': None, 'mobius_sub': None, 'normal_closure': None, 'normal_contained_in': None, 'normal_contains': None, 'normalizer': None, 'old_label': '64.BO', 'projective_image': None, 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '64._.BO', 'subgroup_fusion': None, 'weyl_group': None}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '16.5', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 64, 'aut_gen_orders': [32, 32, 32, 8, 32, 32], 'aut_gens': [[3513740760, 66306, 2800807926], [3870207213, 13069992, 1188221756], [4141800776, 4292157, 2868706290], [1765357840, 12555221, 1612586381], [1918129216, 4485421, 4175749948], [2681985925, 2294239, 594110990], [2698960502, 9278471, 373441268]], 'aut_group': None, 'aut_hash': 7664937467520673312, 'aut_nilpotency_class': 6, 'aut_nilpotent': True, 'aut_order': 16384, 'aut_permdeg': 320, 'aut_perms': [1485406192589488217383969050798455460096495730325482203102371220094287922299593255608957721568519654637656291680863011526183004959136973279084746066302523702492841841131271502019510986476996198057560755437443344078499807287993889453618078209298529349480090049740572807133246666339998721954064131469416108069801323460311924152984980884312449564100883111921755988663851035666088011221464324005535455784841683911264762303077433589047059488224955357005439647163041938752650355096831757607064312010888656931242976668741695668713436510009076309535808480912496188357892602729512119038715667015885858067735105301565950771622115860235440420177472425941388118404901579547375, 12056923969283256136854266257656098293842965300921460904053469586324589761925846045219853634722532697004814950488175404778512602654809640910693288858025226830972579910624177043945917462676137776697642129331808270872978867062774399224146825260879914678979889505252797599071850980771361886843404983295321537668661779924458392328487720275451736472884742341757482623719164118439148851955470763939243495770373357527432990647343220759539440498402446059029945738476996660797444442726967034227761773681697077854339335055237789121378754710737067542737631842272922901087048903227728178714251759821361741394769285147973529309362897425045191175382665268060172878606617894017359, 7595577780320293250663589810272416638920243221348974438812124061506099068061387420553282228909860651463633213632386854760886267702386644398779019752184077633911471903247100696074057320706369661392474473265207103267459925387455646682049515758269829700677067089884870477231418294802939822503678360029871578402242288179265350565594083124335512412604310497728570381359500712566962850856048678641095747091326247296920605285499869332159729830493194557227179397437197136579001430777573863812828773747118162952396358617145717906868044184707198282710365891244166795272371449579380466240727415557301930802984738104542995465952577924069684468887374431115506246132228978518461, 9750195320103159019065349169328482706568061231714841693846907936844906806230365415210783517015898595760870197821936077205700022597164969966451720374360333655766728100962400358172252565222977311546976882883343606693429168508006573438654845484013745005202301205836520286557645011460182636293210483731319367836766472188888213491083635988621975090288749050596599285416209954143507614052163346949654420679149862461127318609608940365181029670837355369194932059114676911068156719600173468275763999503857130296368744596333787786395967647927316552684992158880159777270219752531554412397677404639765429735696901181274643963313422304810952469250684733924066575211502969761233, 18450809228230381611326678239807718004853298003528743585790485884914740017050187478620854084520827068466644494837270446815696830843628153700577010223443092726843369310271719891048322702531153422204999825802865847036381645273056415848826502996188833317129455561016246059495924210041504397105284888892347674317940342709425912288921986607216145705632900150379530508833810322654095439382111446227052601126537501838238193304994262822783465671653918264108178624044253065495248060009832495447982153782345587967223840566251556430547997649151552095200886464469557924393297496320600108828381082236194976676807449500021644225158206386019409387902916625728403477478506202913274, 2147521789919108124910685979286036235096377048258498891125879486863432037047436470531425359398641991480399072101557583339062540110578889860527953544994374130221028799287915569389360313602980824296183548831712882140383521959161830060589650180954632111395875482552444572146457824648806188276369359959339816539592192616159937980280352581232955627455538732203671664528762866524269673149078051677938092394511119407962024838908705490456474309533662299040641109376052755097265207515610077765075269274968198865377604801117175768087075025724321620050798791236805425238176732392622204016999679603907452852599874370163603104192181062702142797453190491286924224164580919036638], 'aut_phi_ratio': 32.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 1], [2, 64, 1, 1], [4, 1, 2, 1], [4, 2, 1, 1], [4, 2, 4, 1], [4, 64, 1, 1], [8, 1, 4, 1], [8, 2, 2, 3], [8, 64, 2, 1], [16, 2, 4, 2], [16, 2, 8, 1], [16, 64, 4, 1], [32, 2, 8, 2], [32, 2, 16, 1], [64, 2, 16, 2], [64, 2, 32, 1], [128, 2, 128, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_{32}.C_{32}.C_2^4', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 4, 'autcent_group': '16.10', 'autcent_hash': 10, 'autcent_nilpotent': True, 'autcent_order': 16, 'autcent_solvable': True, 'autcent_split': False, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^2\\times C_4', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 32, 'autcentquo_group': '1024.dng', 'autcentquo_hash': 7288729358377021530, 'autcentquo_nilpotent': True, 'autcentquo_order': 1024, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'D_{32}:C_{16}', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 2, 1], [2, 64, 1], [4, 1, 2], [4, 2, 5], [4, 64, 1], [8, 1, 4], [8, 2, 6], [8, 64, 2], [16, 2, 16], [16, 64, 4], [32, 2, 32], [64, 2, 64], [128, 2, 128]], 'center_label': '8.1', 'center_order': 8, 'central_product': False, 'central_quotient': '128.161', 'commutator_count': 1, 'commutator_label': '64.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1'], 'composition_length': 10, 'conjugacy_classes_known': True, 'counter': 2095, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 1], [2, 64, 1, 1], [4, 1, 2, 1], [4, 2, 1, 1], [4, 2, 2, 2], [4, 64, 1, 1], [8, 1, 4, 1], [8, 2, 2, 3], [8, 64, 2, 1], [16, 2, 4, 2], [16, 2, 8, 1], [16, 64, 4, 1], [32, 2, 8, 2], [32, 2, 16, 1], [64, 2, 16, 2], [64, 2, 32, 1], [128, 2, 64, 2]], 'element_repr_type': 'GLFp', 'elementary': 2, 'eulerian_function': 24, 'exponent': 128, 'exponents_of_order': [10], 'factors_of_aut_order': [2], 'factors_of_order': [2], 'faithful_reps': [[2, 0, 128]], 'familial': False, 'frattini_label': '256.497', 'frattini_quotient': '4.2', 'hash': 1615446465600477466, 'hyperelementary': 2, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 64, 'inner_gen_orders': [64, 2, 32], 'inner_gens': [[3513740760, 12555221, 2800807926], [152771544, 66306, 1374942198], [3513740760, 9044344, 2800807926]], 'inner_hash': 161, 'inner_nilpotent': True, 'inner_order': 128, 'inner_split': True, 'inner_tex': 'D_{64}', 'inner_used': [1, 2], 'irrC_degree': 2, 'irrQ_degree': 128, 'irrQ_dim': 128, 'irrR_degree': 4, 'irrep_stats': [[1, 16], [2, 252]], 'label': '1024.dco', 'linC_count': 128, 'linC_degree': 2, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 128, 'linQ_degree_count': 2, 'linQ_dim': 128, 'linQ_dim_count': 2, 'linR_count': 64, 'linR_degree': 4, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C8.D64', 'ngens': 3, 'nilpotency_class': 7, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 24, 'number_characteristic_subgroups': 37, 'number_conjugacy_classes': 268, 'number_divisions': 26, 'number_normal_subgroups': 37, 'number_subgroup_autclasses': 86, 'number_subgroup_classes': 88, 'number_subgroups': 617, 'old_label': None, 'order': 1024, 'order_factorization_type': 7, 'order_stats': [[1, 1], [2, 67], [4, 76], [8, 144], [16, 288], [32, 64], [64, 128], [128, 256]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 32, 'outer_gen_orders': [2, 2, 32], 'outer_gen_pows': [16974594, 16974594, 16974594], 'outer_gens': [[611085405, 66306, 1374942198], [3513740999, 66306, 1561662732], [3021477750, 66306, 2376443143]], 'outer_group': '128.988', 'outer_hash': 988, 'outer_nilpotent': True, 'outer_order': 128, 'outer_permdeg': 36, 'outer_perms': [10333147966386144929666651337523200000000, 8744435920973300526071438768797780081, 27175422691743435819738647695393008], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^2\\times C_{32}', 'pc_rank': 3, 'perfect': False, 'permutation_degree': 256, 'pgroup': 2, 'primary_abelian_invariants': [2, 8], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 4], [4, 7], [8, 2], [16, 3], [32, 3], [64, 1], [128, 2]], 'representations': {'PC': {'code': '100727962972253419728838842804624023322781710289203118702462', 'gens': [1, 2, 9], 'pres': [10, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 7001, 51, 21002, 82, 4803, 113, 12004, 144, 13445, 175, 13446, 206, 40328, 268, 64009]}, 'GLFp': {'d': 2, 'p': 257, 'gens': [3513740760, 66306, 2800807926]}, 'Perm': {'d': 256, 'gens': [3351162936232298192219805570396277029626281365581653117565754103970271725491173397102749968900066098666974152664840291844364229793038393131793415094906281289256320723753829919516494847099680328045713094886190707709746333185518628520100587984433408387381907076410850837423575533102772977360930725566369888453234065591944291285911832483527499116387677467138868065244823907350926796507792436401300806583040860235745548035419399253619567640672063599305901522022337243209662922302309682245496558550662793030806, 6767819837232254853962418103722235681086852836166730764343801187195294392121889874975710237980998365237436977245051894324918801728604452575773500969417602405899247425113958315997973691364965510445612019639728840694960638002777286431055992742610679623468413512172560837011213536179908319853638499176046591032772932465675656648040449487552391003534917058894505808396137219537938476946327611112590685398320816518212394202418387812560386249409243471803094134549285500052197822212928481831862001882891755533846, 10131861623219841880872075034929708593446351211016346705784640868746735757384770501007111803014712748366507697723099623515650246957052765199769628399298602166189100317286105545317778714623790064887346392056903091600988950850934060658045323905315230416076761779645284600760224160333066040196861090625964101605758825422125071335005315878815040024331692464895192042873793341161676393321382589702516783396024695918345356856147644613688458934455895377465499518846922222161031019289577987586362679373144841315703]}}, 'schur_multiplier': [2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 8], 'solvability_type': 4, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_8.D_{64}', 'transitive_degree': 256, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '512.60895', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 256, 'aut_gen_orders': [64, 256, 128, 256, 64, 128], 'aut_gens': [[1459815001, 152771338, 66306], [3734410585, 611085545, 10918902], [2902655657, 1425865907, 7130208], [4022978708, 4073902459, 6573546], [729907505, 831755194, 14427466], [695958476, 594110994, 15043752], [2240646313, 1969052924, 10236310]], 'aut_group': None, 'aut_hash': 3734133122171447582, 'aut_nilpotency_class': 8, 'aut_nilpotent': True, 'aut_order': 4194304, 'aut_permdeg': 384, 'aut_perms': [98409037900948726891047933534235636475547085652821247657143424023065559136281637221103758937361219505396287174540245524428235773785194329701856825505246210987991910264486162097411750103948667629727303942534889257720843862161702263481499179953843706392780043604644920219843010666004451744526749551004059216301853123665476738023682748526116927137618936187104062995241556966585604407918689910329343574899808922703560376311663646421204920106470501571565450603423487021618649140167250234413417660807617652443949228421507659766429907558331683395772121143416651696759444682299070073271175418222716187536841948317110380778980805687064548750639141498648380879589973366664295371768023626282100927594384399582544868041215987763573201331394915006457347888168887512376252367104654393320722613618600259751617688031039737197486648642250472980, 116132078832334961793928045055337715651282186840179396590512857239958506335611863978761686613260175446731070988057529335993607202028990375548460961000031471093539672269260858918008543310702197042596637040639940096277820095180402072066563022359508553162642925108990302655002297231023203953875924132326533857483426646241291119669847836552175950527076239428402162989652118327431923786066223722996641994139523980653379278956676985556372581830485429110588638853296764074821419048292477999649105009411647455251139304013958318173918618665452501690156296966823046360295159665764163921699434040304357989878146850607166320840296467929309321016121768743964442897299363597748980637945281083219558434832313280352246483574135782959919557714851691744630264764808438941167906774338421861795238668594824813227756766743144491468769858485966225895, 80207031192113839427923022099374572518675564991014990144754318003471096485351745155090865792320986270663608399368661528924249284343707855154995282777759204697306419158157938939948644277815782039509869111386709816686771842995757684706886705137838692327413390398619195916601623971885029055668094672425632192430050503887282790179341002447030335852807275125246813813787838767678632403968777279166067956522602992838797613368042729469608204060288277602131097258004414660976310841728327730697747029025092621277947940598198263361028680551333536806718683618153564313350029824384248185379427250636249736250626646325397342518267273888389688873319118833810111663814184286515325523213242113493636002467060340401253754199631536450803084023974651980175637350292045799578928915986322231736107518944054630127760652210171440297342985077206709256, 8424184674323824401331141594680349643902177595722000201428381817159484930374491574027386255312024338641160362897239139801058201852373009649983927787862421239548142643067633925001396530757226209203247381729807332213222631857418260839285897013863524795193110832056324424773379515000304066120179599888027519050119950412818408210815658373810094560038586987547798317588629688056470112483093142778585753378309546234892159811273795718007511131080237481798854132273735442163124437041748045969087855567580429316131442231461697416863262023041351741882307516474605151527671459018501485990697562714821543235264911774174788069118707445736383019589734901919531407958267111271988518999484659045616038478691842753562857075918301616141281276430600994403893835675210230517110716596379713278782776903058185996493766896066583713955656599354839818, 77811252039047385594752185588873663565455667161173248819450863780032285248509488446513423846300555058233516839234655668180775670604710754165443476267304466085429549563946844897806545919932055522763383335643968081707265761879557668590234219114975791628681731048437062270279033391478084219352805892178133062047051160533602954629159046687675124986969191387106350355780032451346767578659372390333202646020437894700946552853999125503852651515936852046747728578434230309578884863321186974257388352628109032691507292703898261611549035187657757405768613794809282889707406024779837217968338687328348737194871314723951881079832151715010032122173606192767295215084711381556546704978599830552271912955851724333916653247417652860297112693385528532604047079245897637021759580145106811848560587129348981540632577967682754275839648476267773170, 182071900450010735637082472288695779275965597001085777661461484154112515594389040652573984760124452107528327245572731386821708508250742925501939469770523516854272282133272703861679727011687522947251357909652168705383546073873382526948796494658995811644862165341398256373740944331701155623035391846954512373884659119784748951765619134203594407719454212500547287702169628978819554454714361180385538848439912541463128113160096478182578750214266837931269187533936153350912646736710429525216482343023468614462284045676271201389350294758244496304508333283349432005341934599488228678737533314854533337960489133743458324115134283983775056636074235426085693853974718501768111619967955846322907915832485885381482498876855829861875034791384694888050066812473053138982524267534347432992943507873803909033863093939499674783284569006579163588], 'aut_phi_ratio': 128.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 1], [2, 128, 2, 1], [4, 1, 2, 1], [4, 2, 1, 1], [4, 2, 4, 1], [4, 128, 2, 1], [8, 1, 4, 1], [8, 2, 2, 3], [8, 2, 16, 1], [8, 128, 4, 1], [16, 1, 8, 1], [16, 2, 4, 3], [16, 2, 8, 2], [16, 2, 64, 1], [16, 128, 8, 1], [32, 1, 16, 1], [32, 2, 8, 3], [32, 2, 16, 2], [32, 2, 32, 2], [32, 2, 256, 1], [32, 128, 16, 1], [64, 1, 32, 1], [64, 2, 16, 3], [64, 2, 32, 2], [64, 2, 64, 2], [64, 2, 128, 2], [64, 2, 1024, 1], [64, 128, 32, 1], [128, 1, 64, 1], [128, 2, 32, 3], [128, 2, 64, 2], [128, 2, 128, 2], [128, 2, 256, 2], [128, 2, 512, 2], [128, 2, 4096, 1], [128, 128, 64, 1], [256, 1, 128, 1], [256, 2, 64, 3], [256, 2, 128, 2], [256, 2, 256, 2], [256, 2, 512, 2], [256, 2, 1024, 2], [256, 2, 2048, 2], [256, 128, 128, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_{32}.C_4^3.C_8^2.C_2^5', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 64, 'autcent_group': '512.420501', 'autcent_hash': 1709335650994231389, 'autcent_nilpotent': True, 'autcent_order': 512, 'autcent_solvable': True, 'autcent_split': False, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^3\times C_{64}', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 128, 'autcentquo_group': None, 'autcentquo_hash': 1312969192172081052, 'autcentquo_nilpotent': True, 'autcentquo_order': 8192, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_{64}.C_{32}.C_2^2', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 2, 1], [2, 128, 2], [4, 1, 2], [4, 2, 5], [4, 128, 2], [8, 1, 4], [8, 2, 22], [8, 128, 4], [16, 1, 8], [16, 2, 92], [16, 128, 8], [32, 1, 16], [32, 2, 376], [32, 128, 16], [64, 1, 32], [64, 2, 1520], [64, 128, 32], [128, 1, 64], [128, 2, 6112], [128, 128, 64], [256, 1, 128], [256, 2, 8128], [256, 128, 128]], 'center_label': '256.1', 'center_order': 256, 'central_product': None, 'central_quotient': '256.539', 'commutator_count': None, 'commutator_label': '128.1', 'complements_known': False, 'complete': False, 'complex_characters_known': False, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1'], 'composition_length': 16, 'conjugacy_classes_known': True, 'counter': 16, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': None, 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 1], [2, 128, 1, 2], [4, 1, 2, 1], [4, 2, 1, 1], [4, 2, 2, 2], [4, 128, 1, 2], [8, 1, 4, 1], [8, 2, 2, 3], [8, 2, 4, 4], [8, 128, 2, 2], [16, 1, 8, 1], [16, 2, 4, 3], [16, 2, 8, 10], [16, 128, 4, 2], [32, 1, 16, 1], [32, 2, 8, 3], [32, 2, 16, 22], [32, 128, 8, 2], [64, 1, 32, 1], [64, 2, 16, 3], [64, 2, 32, 46], [64, 128, 16, 2], [128, 1, 64, 1], [128, 2, 32, 3], [128, 2, 64, 94], [128, 128, 32, 2], [256, 1, 128, 1], [256, 2, 64, 3], [256, 2, 128, 62], [256, 128, 64, 2]], 'element_repr_type': 'GLFp', 'elementary': 2, 'eulerian_function': None, 'exponent': 256, 'exponents_of_order': [16], 'factors_of_aut_order': [2], 'factors_of_order': [2], 'faithful_reps': None, 'familial': False, 'frattini_label': '8192.vg', 'frattini_quotient': '8.5', 'hash': 7308071633351697028, 'hyperelementary': 2, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 128, 'inner_gen_orders': [128, 128, 2], 'inner_gens': [[1459815001, 152771338, 645841], [1459815001, 152771338, 13212113], [50923865, 16974602, 66306]], 'inner_hash': 539, 'inner_nilpotent': True, 'inner_order': 256, 'inner_split': False, 'inner_tex': 'D_{128}', 'inner_used': [1, 3], 'irrC_degree': None, 'irrQ_degree': None, 'irrQ_dim': None, 'irrR_degree': None, 'irrep_stats': None, 'label': '65536.p', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C256.D128', 'ngens': 3, 'nilpotency_class': 8, 'nilpotent': True, 'normal_counts': [1, 1, 3, 5, 7, 9, 11, 13, 19, 21, 19, 17, 15, 13, 11, 7, 1], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 73, 'number_characteristic_subgroups': 129, 'number_conjugacy_classes': 16768, 'number_divisions': 285, 'number_normal_subgroups': 173, 'number_subgroup_autclasses': None, 'number_subgroup_classes': 884, 'number_subgroups': 6863, 'old_label': None, 'order': 65536, 'order_factorization_type': 7, 'order_stats': [[1, 1], [2, 259], [4, 268], [8, 560], [16, 1216], [32, 2816], [64, 7168], [128, 20480], [256, 32768]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 64, 'outer_gen_orders': [64, 32, 64, 64, 64], 'outer_gen_pows': [16974594, 237644358, 2851731763, 16974594, 16974594], 'outer_gens': [[1256119948, 2087875147, 66306], [1357967591, 441339539, 5322727], [1578637301, 356466640, 6181621], [2138798769, 2868706438, 66306], [1408891315, 4175749914, 66306]], 'outer_group': None, 'outer_hash': 1709335650928231063, 'outer_nilpotent': True, 'outer_order': 16384, 'outer_permdeg': 132, 'outer_perms': [154249900121750978389357575958032494645042937946875580787750681721394876158418863902306579117876121171126676569818774791817718726904465498726750646627672598395901601864062426027771339620791879895479940690137066798725, 847158139380657876769287550670158282197148382034890233578194885468717571194507897228041276787733927479435948272897987145655760395070716678653021809429473563632484171169959913627704645709752866243274172511891484081041362537, 847207950105543122566557463972451320877777454173045484010134841593667729738511728825817555380977960060481426577767122131246604604074753152866063380880056887197508543448652670570072332033980382570635941242894085571592788576, 82434418161701984228201142432614776538966813358566018130866853605326798250858442879930575386248507238956178083795785244431992795221154393235925898655326580992200264581051674602592766109922341093603884987402848952518, 85469996867173242746595776127611608723683161902513739986581068347059616957134271383313628943415432757170876463458471708138517112968705551735074538623708637203075705878380375759202396005183225667880562482703777288908], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^2\\times C_{64}^2', 'pc_rank': 3, 'perfect': False, 'permutation_degree': 512, 'pgroup': 2, 'primary_abelian_invariants': [2, 2, 128], 'quasisimple': False, 'rank': 3, 'rational': False, 'rational_characters_known': False, 'ratrep_stats': None, 'representations': {'PC': {'code': '1425217463392356524901258323293590027714054902178534354208815616937434794101172274177374120890391939331314186175878954926099675479934', 'gens': [1, 2, 9], 'pres': [16, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1826753, 81, 2322242, 130, 1981955, 179, 4934404, 228, 5526533, 277, 5526534, 326, 4210695, 424, 473, 522, 571, 620, 669, 718]}, 'GLFp': {'d': 2, 'p': 257, 'gens': [1459815001, 152771338, 66306]}, 'Perm': {'d': 512, 'gens': [683155816830316801685771517673479608978294905433499288300862836017548983274282393484752075271692732435174117730633786283189838683993538997360380966239216864592073615194224016408213934098238424722502747259124867531339355917208005561189225341671244674537451441884948330690072704009025439442589550204630332552924471288559597705458913784359951934326162414959147988208643592549197835965648247457680447753304089074867291658826548403635124209983712420408962920880457188924366406127719273828218003727816577989745018530396294113889968766443017113489029271346522883838862156105885070320911021852601177666175016451307784904230211615753662469228947344422906138922470379972530273282872991894341517313687842724046276858068678126895522927869965001511811673487766429786668243311179583984975442015386491958135414844790674344677646856738164385108091061379509560069316962123874035379691410938780487172846634920013655828403819679517121199535466193348650033583856327708732120226625104200801469077903000949370560061769777458434104483815639133486512280881435860606416249310946746548016278057018830890203383794603776487513087322735984553073379019675913279430625164339769542021247696992524, 1363632647389885018928083489542858009931963112967180866208398394419739281117782194744686017992331585954434696455256946913335909625844652987440215185071429888654731887711347078914639473441652720679632223607335691051996075428072827915399118862679560410539693981500517516390199834665823864737969620303458864428714555430583882196383941630879910049092245980711097151452903856136416717897615373798534158925480179119609431760575991441829806803131316157962257043190170084726325940540886056941173994323734019214689427660877597131831321953694094903440283829031381750728815447456810061037630731942567557109068370167068167336541484628886710213213672323643103821933885467156885158165913264273898708925138908170137878183182758264715066710975520087361275390942601587002358101997454991532974166710700618719368763741277331588446828397609980979000735179055900576469275830508567634403985887931926443406713443737256409059137165750425719180206773241018280549539368354155253125860581813717083544165726807809859018340820889934869838840362420351676868796586425278222608261513935169210981851806932646057021454676570002780784782192790748014826651650359346270769465339822611065618787197768816, 13035293235936029213967095896429800831523614690952146494859993226531410980320080771568628347838821136448935373115472705647797431806378636967427701327472769998698749085826524869933337470048635957709375932019989099459705987689316594269892679301212381022716500159322505180756826661179742173232728621693739662542386751668882040054824949802959830378153715399291612206497259948137452203449287068633452850276177065361528171949409221674847355348033803974257578778008857403834977185506429777915110771916716008725127775602352565066999417012205765306924445680159463003443718432114261657040831996235555038770368428949702288248650133340718632585832600071544998527961203781508639202842030625784996545834302114544232343282292695056683550281810377645617430661452559244204505724303905649738164337643412051483235279411199881208414288879365725801332058333980480246976139524066396960748737799871818255306467042716715739625349063664451837166698792939762446195382641520909322056606760293406630104153617117535020591077074878531311600757655804338021142636164687106452233041889726185960995713671411848173507018050258426101786210877830424982860490938304469088133345777996847396776600920]}}, 'schur_multiplier': [2, 2], 'semidirect_product': False, 'simple': False, 'smith_abelian_invariants': [2, 2, 128], 'solvability_type': 4, 'solvable': True, 'subgroup_inclusions_known': False, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{256}.D_{128}', 'transitive_degree': 512, 'wreath_data': None, 'wreath_product': False}