Subgroup ($H$) information
Description: | $C_8.D_{64}$ |
Order: | \(1024\)\(\medspace = 2^{10} \) |
Index: | \(64\)\(\medspace = 2^{6} \) |
Exponent: | \(128\)\(\medspace = 2^{7} \) |
Generators: |
$\left(\begin{array}{rr}
165 & 0 \\
0 & 81
\end{array}\right), \left(\begin{array}{rr}
200 & 0 \\
0 & 62
\end{array}\right), \left(\begin{array}{rr}
1 & 0 \\
0 & 256
\end{array}\right), \left(\begin{array}{rr}
253 & 0 \\
0 & 64
\end{array}\right), \left(\begin{array}{rr}
32 & 0 \\
0 & 249
\end{array}\right), \left(\begin{array}{rr}
0 & 27 \\
238 & 0
\end{array}\right), \left(\begin{array}{rr}
240 & 0 \\
0 & 136
\end{array}\right), \left(\begin{array}{rr}
16 & 0 \\
0 & 241
\end{array}\right), \left(\begin{array}{rr}
1 & 0 \\
0 & 241
\end{array}\right), \left(\begin{array}{rr}
256 & 0 \\
0 & 256
\end{array}\right)$
|
Nilpotency class: | $7$ |
Derived length: | $2$ |
The subgroup is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Ambient group ($G$) information
Description: | $C_{256}.D_{128}$ |
Order: | \(65536\)\(\medspace = 2^{16} \) |
Exponent: | \(256\)\(\medspace = 2^{8} \) |
Nilpotency class: | $8$ |
Derived length: | $2$ |
The ambient group is nonabelian, a $p$-group (hence nilpotent, solvable, supersolvable, monomial, elementary, and hyperelementary), and metabelian.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_{32}.C_4^3.C_8^2.C_2^5$ |
$\operatorname{Aut}(H)$ | $C_{32}.C_{32}.C_2^4$ |
$\card{W}$ | not computed |
Related subgroups
Centralizer: | not computed |
Normalizer: | not computed |
Normal closure: | not computed |
Core: | not computed |
Autjugate subgroups: | Subgroups are not computed up to automorphism. |
Other information
Number of subgroups in this conjugacy class | $2$ |
Möbius function | not computed |
Projective image | not computed |