-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'ambient': '6531840.b', 'ambient_counter': 2, 'ambient_order': 6531840, 'ambient_tex': '\\PSOMinus(6,3)', 'central': False, 'central_factor': False, 'centralizer_order': 4, 'characteristic': False, 'core_order': 1, 'counter': 604, 'cyclic': False, 'direct': None, 'hall': 0, 'label': '6531840.b.136080.bc1.a1', 'maximal': False, 'maximal_normal': False, 'metabelian': False, 'metacyclic': False, 'minimal': False, 'minimal_normal': False, 'nilpotent': False, 'normal': False, 'old_label': '136080.bc1.a1', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': None, 'quotient_Agroup': None, 'quotient_abelian': None, 'quotient_cyclic': None, 'quotient_hash': None, 'quotient_metabelian': None, 'quotient_nilpotent': None, 'quotient_order': 136080, 'quotient_simple': None, 'quotient_solvable': None, 'quotient_supersolvable': None, 'quotient_tex': None, 'simple': False, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '48.48', 'subgroup_hash': 48, 'subgroup_order': 48, 'subgroup_tex': 'C_2\\times S_4', 'supersolvable': False, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '6531840.b', 'aut_centralizer_order': None, 'aut_label': '136080.bc1', 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': '1632960.b2.a1', 'complements': None, 'conjugacy_class_count': 1, 'contained_in': ['9072.f1.a1', '34020.r1.a1', '68040.u1.a1', '68040.v1.a1', '68040.y1.a1'], 'contains': ['272160.w1.a1', '272160.y1.a1', '408240.bu1.a1', '544320.o1.a1'], 'core': '6531840.a1.a1', 'coset_action_label': None, 'count': 34020, 'diagramx': None, 'generators': [78284631970101376, 100108917311798342, 109177104520513901, 129940300054919297, 144787293350373979], 'label': '6531840.b.136080.bc1.a1', 'mobius_quo': None, 'mobius_sub': None, 'normal_closure': '2.a1.a1', 'normal_contained_in': None, 'normal_contains': None, 'normalizer': '34020.o1.a1', 'old_label': '136080.bc1.a1', 'projective_image': '6531840.b', 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '136080.bc1.a1', 'subgroup_fusion': None, 'weyl_group': '48.48'}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '4.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 12, 'aut_gen_orders': [2, 2, 3, 2, 2], 'aut_gens': [[143, 127, 576, 126, 121], [719, 127, 304, 126, 7], [16, 127, 576, 126, 121], [719, 127, 576, 7, 126], [143, 127, 702, 126, 121], [136, 127, 583, 126, 121]], 'aut_group': '48.48', 'aut_hash': 48, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 48, 'aut_permdeg': 6, 'aut_perms': [269, 450, 244, 94, 444], 'aut_phi_ratio': 3.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 3, 1, 2], [2, 6, 2, 1], [3, 8, 1, 1], [4, 6, 2, 1], [6, 8, 1, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_2\\times S_4', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 2, 'autcent_group': '2.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 2, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 12, 'autcentquo_group': '24.12', 'autcentquo_hash': 12, 'autcentquo_nilpotent': False, 'autcentquo_order': 24, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'S_4', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 3, 2], [2, 6, 2], [3, 8, 1], [4, 6, 2], [6, 8, 1]], 'center_label': '2.1', 'center_order': 2, 'central_product': True, 'central_quotient': '24.12', 'commutator_count': 1, 'commutator_label': '12.3', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '3.1'], 'composition_length': 5, 'conjugacy_classes_known': True, 'counter': 48, 'cyclic': False, 'derived_length': 3, 'dihedral': False, 'direct_factorization': [['2.1', 1], ['24.12', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 3, 1, 2], [2, 6, 1, 2], [3, 8, 1, 1], [4, 6, 1, 2], [6, 8, 1, 1]], 'element_repr_type': 'Perm', 'elementary': 1, 'eulerian_function': 9, 'exponent': 12, 'exponents_of_order': [4, 1], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [[3, 1, 2]], 'familial': True, 'frattini_label': '1.1', 'frattini_quotient': '48.48', 'hash': 48, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 12, 'inner_gen_orders': [2, 1, 3, 2, 2], 'inner_gens': [[143, 127, 304, 121, 126], [143, 127, 576, 126, 121], [415, 127, 576, 121, 7], [136, 127, 697, 126, 121], [136, 127, 583, 126, 121]], 'inner_hash': 12, 'inner_nilpotent': False, 'inner_order': 24, 'inner_split': True, 'inner_tex': 'S_4', 'inner_used': [1, 3, 4], 'irrC_degree': 3, 'irrQ_degree': 3, 'irrQ_dim': 3, 'irrR_degree': 3, 'irrep_stats': [[1, 4], [2, 2], [3, 4]], 'label': '48.48', 'linC_count': 2, 'linC_degree': 3, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 3, 'linQ_degree_count': 2, 'linQ_dim': 3, 'linQ_dim_count': 2, 'linR_count': 2, 'linR_degree': 3, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': True, 'name': 'C2*S4', 'ngens': 5, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 8, 'number_characteristic_subgroups': 7, 'number_conjugacy_classes': 10, 'number_divisions': 10, 'number_normal_subgroups': 9, 'number_subgroup_autclasses': 26, 'number_subgroup_classes': 33, 'number_subgroups': 98, 'old_label': None, 'order': 48, 'order_factorization_type': 31, 'order_stats': [[1, 1], [2, 19], [3, 8], [4, 12], [6, 8]], 'outer_abelian': True, 'outer_cyclic': True, 'outer_equivalence': False, 'outer_exponent': 2, 'outer_gen_orders': [2], 'outer_gen_pows': [0], 'outer_gens': [[16, 127, 576, 126, 121]], 'outer_group': '2.1', 'outer_hash': 1, 'outer_nilpotent': True, 'outer_order': 2, 'outer_permdeg': 2, 'outer_perms': [1], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 6, 'pgroup': 0, 'primary_abelian_invariants': [2, 2], 'quasisimple': False, 'rank': 2, 'rational': True, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 2], [3, 4]], 'representations': {'PC': {'code': 44643202623812656708, 'gens': [1, 2, 4, 5], 'pres': [5, -2, -2, -3, -2, 2, 101, 26, 122, 483, 248, 193, 304, 459, 89]}, 'GLZ': {'b': 3, 'd': 3, 'gens': [10320, 9038]}, 'Lie': [{'d': 3, 'q': 3, 'gens': [1557, 1699, 13205], 'family': 'GO'}, {'d': 3, 'q': 3, 'gens': [1557, 1699, 13205], 'family': 'CO'}], 'GLFp': {'d': 3, 'p': 3, 'gens': [16120, 18391, 13286, 6922, 13843]}, 'Perm': {'d': 6, 'gens': [143, 127, 576, 126, 121]}}, 'schur_multiplier': [2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2], 'solvability_type': 11, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'C_2\\times S_4', 'transitive_degree': 6, 'wreath_data': ['24.b1.a1', '8.b1.a1', '24.d1.a1', '3T2'], 'wreath_product': True}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '2.1', 'all_subgroups_known': True, 'almost_simple': True, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 2520, 'aut_gen_orders': [8, 9, 2], 'aut_gens': [[50077316156099761, 16677764777968770, 50077309149050176], [116733516203203951, 86554451355277937, 50834220306819262], [39684763801295041, 102514216690548264, 54062120658997408], [66407004122010619, 67764971263556240, 51385242658610947]], 'aut_group': '26127360.d', 'aut_hash': 2943447302241579943, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 26127360, 'aut_permdeg': 540, 'aut_perms': [401861576007490687748927760868395752835659195431000475727069850361941294333219556214147446385885609727568376558426445706240243479203830031952841189092084787000832184081488673079902398303398053419385883554252438768132113080718284629940795595368369273593466958535911022848847116290611881086191448191719444138612816631395646294661067453925695006668112529030086455185833045010084785106580354588504645260709781575736704650357642725505877935393296041894067133790619639176903816960824701347356903239794048449498965988274677167632683847368320870563947666867407618304118106675219957922517517273498051115001497194856997916542376234365102174421158155010747790210500526436767710317583792063306655368362871479043336141791069929584926098920834181424605314221756253876562281342110150525919002109990587289435365749218007236348989926363917291902336479357193964672619541820190881301547105665450326951365227712123307387090150324693857088906556027398529710654880308191491215286313037748832036049906848581963730745849101425128768412373391850504975758496712343434062604907039442502290477604527288656817570869456020951558192230552019148406886620642920638409910949336186808316217948595888706193202069124679681064006363989231437252491802742165633316645182790050995749, 2604984262405992020851517262629035046015099387759340241167857197701706974958294114335054818205821161185378146024990027334552708912359040636904351590782378460754090142975056576910300785963285716430481764520588620026879099513022810373582746857411936834781894710203829312192886463217485032544011138537302141912436952450156466396371261075402025296376398691324171202342588019948251728582756322837518732891868174966780966203329370756059482583050273188769665410488654308212626177211144535381292693919128999071638500164337121371477440605877983286751396701210361309768619425396478106458322310870593875201862776813530044764655682296577961303873018984702130701823258238265854338829610854025777409357313767430745254931497997860622710974357016675013864045592695218884650697939372293461022040234793753620637895462439836750354375810069147985858454661188773088634284604530988670593333406064267720798465373745087171449159037451677113088939660694533800219269168817266207128830301530030020037621143561575886363786894755699792338999436590787771560261661071848678951202789979629433096678440155365654045665054552457503580761045100915924726219960705910162732972670204882877963409582629533214100429031963211955319046887645924405329625670321559424295715752307518939854, 4490116452819007469230602666435699963873187671385109487152054799096202092454869009302050193929610693884115576481410056022965395193633927344240143295386005815590023418787746191426880584498221469264781495326863958327794840040708596395300205735244841906004687196653949408589242723423178974582597460290813088361566501386572820425312080790309549878939246001146312637021691179529679945698766628800000211111242502142672775927621439518830667577895929985624489520424779542524848817838178002360701528981757859370352469767338129308053374384569402520926315595413353420806612588423540522512572147948304997269445106217664275849718452687225836313621435837599593688332878812817907755804617532868889620865790400980006191298329154097872502222344871157321535911258264575576332372561288494874628189046331017092953063942381339327499305168506849775210722184851224767267922968137687429686035149042376047736255628413842095834493134765974712713540758752828287895643686273554689313659131733517442898709483125024988110817779361799217665918643555413972133421367643621410429001479782404534577207818422229604178117428433784147464534367794436843927146265295888019690161034922311098136972366002540197436987245012339015271525010886978677272488230264383963491686431659556693468], 'aut_phi_ratio': 17.5, 'aut_solvable': False, 'aut_stats': [[1, 1, 1, 1], [2, 540, 1, 1], [2, 2835, 1, 1], [2, 4536, 1, 1], [3, 560, 1, 1], [3, 3360, 2, 1], [3, 40320, 1, 1], [4, 5670, 1, 1], [4, 34020, 1, 1], [4, 51030, 1, 1], [4, 204120, 1, 1], [5, 653184, 1, 1], [6, 30240, 1, 1], [6, 45360, 1, 1], [6, 90720, 2, 1], [6, 181440, 2, 1], [6, 362880, 1, 1], [7, 466560, 2, 1], [8, 408240, 1, 2], [9, 241920, 2, 1], [10, 653184, 1, 1], [12, 45360, 2, 1], [12, 181440, 2, 1], [12, 272160, 1, 1], [14, 466560, 2, 1]], 'aut_supersolvable': False, 'aut_tex': '\\PGammaU(4,3)', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 1, 'autcent_group': '1.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 1, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_1', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 2520, 'autcentquo_group': '26127360.d', 'autcentquo_hash': 2943447302241579943, 'autcentquo_nilpotent': False, 'autcentquo_order': 26127360, 'autcentquo_solvable': False, 'autcentquo_supersolvable': False, 'autcentquo_tex': '\\PGammaU(4,3)', 'cc_stats': [[1, 1, 1], [2, 540, 1], [2, 2835, 1], [2, 4536, 1], [3, 560, 1], [3, 3360, 2], [3, 40320, 1], [4, 5670, 1], [4, 34020, 1], [4, 51030, 1], [4, 204120, 1], [5, 653184, 1], [6, 30240, 1], [6, 45360, 1], [6, 90720, 2], [6, 181440, 2], [6, 362880, 1], [7, 466560, 2], [8, 408240, 2], [9, 241920, 2], [10, 653184, 1], [12, 45360, 2], [12, 181440, 2], [12, 272160, 1], [14, 466560, 2]], 'center_label': '1.1', 'center_order': 1, 'central_product': False, 'central_quotient': '6531840.b', 'commutator_count': 1, 'commutator_label': '3265920.a', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '3265920.a'], 'composition_length': 2, 'conjugacy_classes_known': True, 'counter': 2, 'cyclic': False, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 540, 1, 1], [2, 2835, 1, 1], [2, 4536, 1, 1], [3, 560, 1, 1], [3, 3360, 1, 2], [3, 40320, 1, 1], [4, 5670, 1, 1], [4, 34020, 1, 1], [4, 51030, 1, 1], [4, 204120, 1, 1], [5, 653184, 1, 1], [6, 30240, 1, 1], [6, 45360, 1, 1], [6, 90720, 1, 2], [6, 181440, 1, 2], [6, 362880, 1, 1], [7, 466560, 2, 1], [8, 408240, 1, 2], [9, 241920, 1, 2], [10, 653184, 1, 1], [12, 45360, 2, 1], [12, 181440, 1, 2], [12, 272160, 1, 1], [14, 466560, 2, 1]], 'element_repr_type': 'Lie', 'elementary': 1, 'eulerian_function': None, 'exponent': 2520, 'exponents_of_order': [8, 6, 1, 1], 'factors_of_aut_order': [2, 3, 5, 7], 'factors_of_order': [2, 3, 5, 7], 'faithful_reps': [[21, 1, 2], [35, 1, 4], [90, 1, 2], [140, 1, 2], [189, 1, 2], [210, 1, 2], [315, 1, 4], [420, 1, 2], [560, 0, 2], [560, 1, 2], [640, 0, 4], [729, 1, 2], [896, 1, 2]], 'familial': True, 'frattini_label': '1.1', 'frattini_quotient': '6531840.b', 'hash': 8109001797732275, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 2520, 'inner_gen_orders': [4, 9, 2], 'inner_gens': [[50077316156099761, 16677764390029962, 50077309149050176], [113263024647040643, 16677764777968770, 102350780684006294], [50077316156099761, 16677771359865555, 50077309149050176]], 'inner_hash': 8109001797732275, 'inner_nilpotent': False, 'inner_order': 6531840, 'inner_split': False, 'inner_tex': '\\PSOMinus(6,3)', 'inner_used': [1, 2, 3], 'irrC_degree': 21, 'irrQ_degree': 21, 'irrQ_dim': 21, 'irrR_degree': 21, 'irrep_stats': [[1, 2], [21, 2], [35, 4], [90, 2], [140, 2], [189, 2], [210, 2], [315, 4], [420, 2], [560, 4], [640, 4], [729, 2], [896, 2]], 'label': '6531840.b', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': False, 'name': 'PSO-(6,3)', 'ngens': 3, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 26, 'number_characteristic_subgroups': 3, 'number_conjugacy_classes': 34, 'number_divisions': 31, 'number_normal_subgroups': 3, 'number_subgroup_autclasses': 659, 'number_subgroup_classes': 983, 'number_subgroups': 33884546, 'old_label': None, 'order': 6531840, 'order_factorization_type': 321, 'order_stats': [[1, 1], [2, 7911], [3, 47600], [4, 294840], [5, 653184], [6, 982800], [7, 933120], [8, 816480], [9, 483840], [10, 653184], [12, 725760], [14, 933120]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 2, 'outer_gen_orders': [2, 2], 'outer_gen_pows': [111561641817188651, 85135733989493878], 'outer_gens': [[39735820382953446, 71090868607080088, 29205174101958690], [91077095702793019, 63514781037897050, 81000600703675771]], 'outer_group': '4.2', 'outer_hash': 2, 'outer_nilpotent': True, 'outer_order': 4, 'outer_permdeg': 4, 'outer_perms': [1, 6], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^2', 'pc_rank': None, 'perfect': False, 'permutation_degree': 112, 'pgroup': 0, 'primary_abelian_invariants': [2], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 2], [21, 2], [35, 4], [90, 2], [140, 2], [189, 2], [210, 2], [315, 4], [420, 2], [560, 2], [729, 2], [896, 2], [1120, 1], [1280, 2]], 'representations': {'Lie': [{'d': 6, 'q': 3, 'gens': [50077309149050176, 16677764777968770, 50077316156099761], 'family': 'PSOMinus'}], 'Perm': {'d': 112, 'gens': [6499473806904459303242362343133880436412780409967094809599787282508804516736980463479599825181504605491761394995722278924463064589108210295655339707058427338075933357404, 1795010208112141724888994965365846591139959375438226956893227218149460206340525503292272660592395014476842888819448440958943129420920810140497154716204515290809202724237688529775646, 2661782454126690432092439613961981365725368869407251260394735671343513526558263396044327423772229610216110169054530834754280039897094016770932398773495750018022219292351911425]}}, 'schur_multiplier': [4], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2], 'solvability_type': 13, 'solvable': False, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': '\\PSOMinus(6,3)', 'transitive_degree': 112, 'wreath_data': None, 'wreath_product': False}