Properties

Label 6531840.b.136080.bc1.a1
Order $ 2^{4} \cdot 3 $
Index $ 2^{4} \cdot 3^{5} \cdot 5 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2\times S_4$
Order: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Index: \(136080\)\(\medspace = 2^{4} \cdot 3^{5} \cdot 5 \cdot 7 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\left[ \left(\begin{array}{rrrrrr} 1 & 0 & 1 & 0 & 2 & 1 \\ 1 & 2 & 2 & 0 & 1 & 2 \\ 1 & 0 & 2 & 1 & 2 & 1 \\ 1 & 0 & 2 & 2 & 1 & 2 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 2 & 0 & 0 & 2 & 1 & 1 \end{array}\right) \right], \left[ \left(\begin{array}{rrrrrr} 2 & 0 & 1 & 2 & 1 & 1 \\ 0 & 2 & 1 & 0 & 2 & 1 \\ 0 & 0 & 1 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \end{array}\right) \right], \left[ \left(\begin{array}{rrrrrr} 2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 0 \\ 0 & 2 & 1 & 0 & 0 & 0 \\ 1 & 2 & 0 & 1 & 0 & 0 \\ 2 & 1 & 0 & 1 & 2 & 0 \\ 2 & 2 & 1 & 1 & 0 & 2 \end{array}\right) \right], \left[ \left(\begin{array}{rrrrrr} 2 & 0 & 2 & 0 & 1 & 2 \\ 1 & 1 & 1 & 2 & 1 & 1 \\ 2 & 0 & 0 & 1 & 2 & 2 \\ 0 & 0 & 1 & 2 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 2 & 1 & 2 \end{array}\right) \right], \left[ \left(\begin{array}{rrrrrr} 1 & 0 & 1 & 0 & 2 & 1 \\ 1 & 2 & 1 & 1 & 0 & 1 \\ 2 & 0 & 1 & 2 & 0 & 2 \\ 1 & 0 & 0 & 1 & 2 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 1 & 0 & 0 & 2 & 2 & 2 \end{array}\right) \right]$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian, monomial (hence solvable), and rational.

Ambient group ($G$) information

Description: $\PSOMinus(6,3)$
Order: \(6531840\)\(\medspace = 2^{8} \cdot 3^{6} \cdot 5 \cdot 7 \)
Exponent: \(2520\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \)
Derived length:$1$

The ambient group is nonabelian, almost simple, and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PGammaU(4,3)$, of order \(26127360\)\(\medspace = 2^{10} \cdot 3^{6} \cdot 5 \cdot 7 \)
$\operatorname{Aut}(H)$ $C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$W$$C_2\times S_4$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)

Related subgroups

Centralizer:$C_2^2$
Normalizer:$D_4\times S_4$
Normal closure:$\PSU(4,3)$
Core:$C_1$
Minimal over-subgroups:$S_6$$C_2^3:S_4$$C_4:S_4$$C_2^2\times S_4$$\GL(2,\mathbb{Z}/4)$
Maximal under-subgroups:$C_2\times A_4$$S_4$$C_2\times D_4$$D_6$
Autjugate subgroups:6531840.b.136080.bc1.b1

Other information

Number of subgroups in this conjugacy class$34020$
Möbius function not computed
Projective image$\PSOMinus(6,3)$