-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'ambient': '48400.j', 'ambient_counter': 10, 'ambient_order': 48400, 'ambient_tex': 'C_{55}:(Q_8\\times F_{11})', 'central': False, 'central_factor': False, 'centralizer_order': 10, 'characteristic': False, 'core_order': 24200, 'counter': 5, 'cyclic': False, 'direct': False, 'hall': 0, 'label': '48400.j.2.d1', 'maximal': True, 'maximal_normal': True, 'metabelian': True, 'metacyclic': False, 'minimal': False, 'minimal_normal': False, 'nilpotent': False, 'normal': True, 'old_label': '2.d1', 'outer_equivalence': True, 'perfect': False, 'proper': True, 'quotient': '2.1', 'quotient_Agroup': True, 'quotient_abelian': True, 'quotient_cyclic': True, 'quotient_hash': 1, 'quotient_metabelian': True, 'quotient_nilpotent': True, 'quotient_order': 2, 'quotient_simple': True, 'quotient_solvable': True, 'quotient_supersolvable': True, 'quotient_tex': 'C_2', 'simple': False, 'solvable': True, 'special_labels': [], 'split': True, 'standard_generators': False, 'stem': False, 'subgroup': '24200.k', 'subgroup_hash': 2991584039182823895, 'subgroup_order': 24200, 'subgroup_tex': 'C_{11}^2:(Q_8\\times C_5^2)', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '48400.j', 'aut_centralizer_order': None, 'aut_label': '2.d1', 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': '4840.a1', 'complements': ['24200.b1'], 'conjugacy_class_count': 2, 'contained_in': ['1.a1'], 'contains': ['4.c1', '4.d1', '10.g1', '10.h1', '22.f1'], 'core': '2.d1', 'coset_action_label': None, 'count': 2, 'diagramx': [1871, 5422, 6993, 4291], 'generators': [1105, 43580, 2, 9680, 9790, 4400, 24200], 'label': '48400.j.2.d1', 'mobius_quo': 0, 'mobius_sub': -1, 'normal_closure': '2.d1', 'normal_contained_in': ['1.a1'], 'normal_contains': ['4.c1', '4.d1', '10.g1', '10.h1'], 'normalizer': '1.a1', 'old_label': '2.d1', 'projective_image': '4840.y', 'quotient_action_image': '2.1', 'quotient_action_kernel': '1.1', 'quotient_action_kernel_order': 1, 'quotient_fusion': None, 'short_label': '2.d1', 'subgroup_fusion': None, 'weyl_group': '4840.y'}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '100.16', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 220, 'aut_gen_orders': [110, 10, 20, 10, 4], 'aut_gens': [[1, 10, 2200], [24001, 10510, 2200], [8021, 2690, 17600], [15781, 3695, 800], [4701, 19390, 4400], [2661, 1475, 200]], 'aut_group': None, 'aut_hash': 410256423351182531, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 1936000, 'aut_permdeg': 649, 'aut_perms': [1125282880246248175598523672384281931390647930446492061111429788617792373317694087819914631513625305098009571237438526338043411976964382999516152178332980515442512932374784286613497048457926224471325941850275677030958526553114355174023119714155617229305075977145581968235004397651977787447331904019823738459417998858224748626621499410621666982441072702779232016178436754637272946471117198615930074263475966423660819148261957985633007644826616374819409342691687010318650808056036904146551629628461779805235761945876452957211338237101214799539859200184922999391303832466717842400096194273346113819231869524803915053463158923455056497044923504449336415636979688113198515123899302530523294530660736204510944975524737501810196854831409771964945768828735751227089143162885869438350038665957118080176009701825328092738793944231917539363314113622715099030725160058327672665777906060946334169979006967909416748620547723169469812590610411867611843047073385238661496013150428319038084884931700879797915530594932930440442841782597071342245429308894697160774710284987887221115930611651095409667162399659703368426172950213824486248855531149733007562735855980321291111073067775781298143593634225563554710812760509063477498319672828350763107042135051033714136414225479650080500608990809242933045380837932951015741613364358219275924213669447837873539392278352405146686929810914338240442835387280373019590833800720982945089797194694604588107761096496943352129764290178695224512371438947218187215765263370848355283817311739390830500323146647401960688731220002552040, 733184876593971428473615568287991204348210568072549979508010990328843430851435741183530436124971374809686943218810563776657533772074825834876760633836493551179779206172351546148049459660701959070053432571909225514277629767725560670610934348810071660857302687709843304276439439751717958128432617721922345847613019748611823778021953023763026853387620925458010563152588638023247858694631032675816641863934785225797967455034089688910090414641737964381012772507985188358144472111476870615981151899076821095525077932608887775340330406741613249187552017226643055595989730890898737543943981990908321778083596905964792485378086322277434359767621293333205328008090483983638977243324839410059772287130851154059995745801491466280217297230785944121566319662788554204530588904155842675036992503975164537777951806218774051306281285256440708351965161251466972269110929212758345884688635766093574531382395870627916601781882803200305836246013181417295590776217397097602485740863169347366224316720900696774470801621079147051384338880881547480409612421564568627635867156628153177724206914100141482862378155065969742960793792464925439589027146766571241272496766295847122477909318093955601712654620636604120992871845487586726122387467072314096483423536537988195557479002564438095878753155803944389314982276531595074698587375486704819663512075627260833342642904363670911110121690318173415302354355796325288416163450289155065806927084573806316220694945354244679677350733317502447875531166352302078789837097142719042225371100440301042142896072925679583434786961504206764, 588162663653908405871489443121364254579564009232823898130041998246312397489022783765882859148141530006948912391762697942824380341422271373379092487712839733746536405232315726966026402970701550787440015817800350185886318979436534276732328957638675613964191823975017801928594105167250653314744402911447152465091805336993173316904451222066981702076391611732912971076841489546868514888194244567343780520936460183736295223061355335937738711504142440128355591639045816907512477730629741267233092092263739097379808073611687363968722165029990446891330064785484426856585961759636430514891054397258366847026518785090904918893281593672217960622479143004679627748611262156240937022379122536844293969965742764502296560991463744262970343535287869775955094403968910591634189518325093783620732110286887721710665116798702431108422082575505791578820539363139114171636211803170158622291429538432787341941625218601746775089653868023766726851725266721434917020685795104126362956268378651849680487584329976760585573170574525202897583922754398953096169500854963105605033065589880827414047264215190209024988644698099139827130605329681188637573879783080422102088943576727475313814796744876625983180854759292310905282562752596485692312253900747271122336896005835478416937706236648970205811558076693979222423385481316780202731052613214543863641485471554623078730613896210045275320988625156819431791884708381924006283376387447136611196103738072620633054631281202965769816289725968873462229256048060796976107781555622667070224406261889667065672730991288317625745743861496532, 233183949576802454207759431286100208836007352560156067841499567854219644344047368098290626364472346807428184400739280929717509009538290062341451813217022123072717285832672441543957114925371678140831358337981484529765558634407696319217002182894876517292726372732075677140225418134327657698832105481623062396926701685280541239725895915138532067912990620509317360948568540064623516279878806020055721119955365374013430973923580514227385383266857640412037567674887931335499741004543876655584954383831134975013812857929499452391888988798512176200311569676327316661612506723693833159854007595602203673092409006552063441332898990655598997218504481189264781851722067480482695304321646340711918319039080724102056951497501372271784957417697803311663435814092033339475301744176035745206246956904757078171766733808278657226942550024761608999188527704862467461414673509336590863821283542083149023038112131727780001703829011213049309989467321371308484358384257381685727644434073367788684259660780808576509883601914196525692611586380966757319925441364126494365746434597539319316802825426377734393899707075588584364757166821243459738713085989953215625193235861571276960728890818471599037904237442239943417958548590802194099216791692519722833632526457229204072271421157805038280419095792933642088816451937687179612065977192286652040818787217540537532574188443736523071377673088697624843344162053799178549218750801436589014645873670455156699792603943035347346686969312841659059191551683471360323382854189402015213275988102760033442363734958842549795604253210752048, 587978017893016561027818433389930791020429031281143141577600441460272866649163754592566221734805233259926939160100197607171704609319663985527124205647030777974157935306130558786895690553378667819330542488101650874182536205816211861526695254566511401332833285726674022119210393460481234480065589081895974662767744190062972038920789093325180986601158710037029975756267524464431218439168515464580053303096195689382808850470342903364921405358748943769299728226534696463146187139167171717413360291459546119714685264019159708280430702839340418161077618357707226001029544329846104634859436578927106959418573252896646180359108656528059566292065520729849778988299588771670465900076947918651612808271726599211184298955969645177234108659102023454208514589783507501671257395686935054969545069759792679089818714749985410907210426597866350304726648403630227064299617092552911839458256468628760008348959178159022557219044092550354647851400809925264908044943478191383171542949427358811144009657986825713626825367262990724817091241433158433980923776177284078012363674465767666128748815409317335285352273808997983163247915930824763641931438202699834672135346797891877809766820357215252360617196625329110709119031785706411811977923223146768457373368167622807446488408659590130310587321816196217228146197297838846522949837536893986094069070482131645421306867445352437618737677409401539157904935681450571199548643466267509738418468283287605369511033901431831124767412703447514695266178533187440162499208866623742083825685686922048590417902183776673339214670003178800], 'aut_phi_ratio': 220.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [4, 22, 2, 1], [4, 242, 1, 1], [5, 1, 4, 1], [5, 121, 5, 4], [10, 1, 4, 1], [10, 121, 5, 4], [11, 10, 2, 1], [11, 20, 5, 1], [20, 22, 8, 1], [20, 242, 4, 1], [20, 242, 5, 4], [20, 242, 10, 4], [22, 10, 2, 1], [22, 20, 5, 1], [44, 110, 4, 1], [55, 10, 8, 1], [55, 20, 20, 1], [110, 10, 8, 1], [110, 20, 20, 1], [220, 110, 16, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_{11}^2.C_{10}^2.C_{10}.C_2^4', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 20, 'autcent_group': '80.50', 'autcent_hash': 50, 'autcent_nilpotent': False, 'autcent_order': 80, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^2\\times F_5', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 220, 'autcentquo_group': '24200.bg', 'autcentquo_hash': 3957277396302200749, 'autcentquo_nilpotent': False, 'autcentquo_order': 24200, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'F_{11}\\wr C_2', 'cc_stats': [[1, 1, 1], [2, 1, 1], [4, 22, 2], [4, 242, 1], [5, 1, 4], [5, 121, 20], [10, 1, 4], [10, 121, 20], [11, 10, 2], [11, 20, 5], [20, 22, 8], [20, 242, 64], [22, 10, 2], [22, 20, 5], [44, 110, 4], [55, 10, 8], [55, 20, 20], [110, 10, 8], [110, 20, 20], [220, 110, 16]], 'center_label': '10.2', 'center_order': 10, 'central_product': True, 'central_quotient': '2420.x', 'commutator_count': 1, 'commutator_label': '242.5', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '5.1', '5.1', '11.1', '11.1'], 'composition_length': 7, 'conjugacy_classes_known': True, 'counter': 11, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['4840.bc', 1], ['5.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [4, 22, 1, 2], [4, 242, 1, 1], [5, 1, 4, 1], [5, 121, 4, 5], [10, 1, 4, 1], [10, 121, 4, 5], [11, 10, 1, 2], [11, 20, 1, 5], [20, 22, 4, 2], [20, 242, 4, 16], [22, 10, 1, 2], [22, 20, 1, 5], [44, 110, 2, 2], [55, 10, 4, 2], [55, 20, 4, 5], [110, 10, 4, 2], [110, 20, 4, 5], [220, 110, 8, 2]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 72, 'exponent': 220, 'exponents_of_order': [3, 2, 2], 'factors_of_aut_order': [2, 5, 11], 'factors_of_order': [2, 5, 11], 'faithful_reps': [[20, 0, 20]], 'familial': False, 'frattini_label': '2.1', 'frattini_quotient': '12100.t', 'hash': 2991584039182823895, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 110, 'inner_gen_orders': [10, 22, 11], 'inner_gens': [[1, 18110, 15400], [8301, 10, 22000], [11001, 4410, 2200]], 'inner_hash': 3244222575460283753, 'inner_nilpotent': False, 'inner_order': 2420, 'inner_split': True, 'inner_tex': 'D_{11}:F_{11}', 'inner_used': [1, 2], 'irrC_degree': 20, 'irrQ_degree': 80, 'irrQ_dim': 160, 'irrR_degree': 40, 'irrep_stats': [[1, 100], [2, 25], [10, 40], [20, 50]], 'label': '24200.k', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C11^2:(Q8*C5^2)', 'ngens': 7, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 34, 'number_characteristic_subgroups': 16, 'number_conjugacy_classes': 215, 'number_divisions': 67, 'number_normal_subgroups': 64, 'number_subgroup_autclasses': 76, 'number_subgroup_classes': 312, 'number_subgroups': 8112, 'old_label': None, 'order': 24200, 'order_factorization_type': 321, 'order_stats': [[1, 1], [2, 1], [4, 286], [5, 2424], [10, 2424], [11, 120], [20, 15664], [22, 120], [44, 440], [55, 480], [110, 480], [220, 1760]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 20, 'outer_gen_orders': [2, 4, 10, 10], 'outer_gen_pows': [1108, 0, 0, 0], 'outer_gens': [[1101, 12315, 2000], [1541, 1530, 2200], [1101, 2710, 22000], [1761, 10710, 8800]], 'outer_group': '800.1009', 'outer_hash': 1009, 'outer_nilpotent': False, 'outer_order': 800, 'outer_permdeg': 14, 'outer_perms': [1037963520, 9, 13974549840, 131868], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_5:D_4\\times F_5', 'pc_rank': 3, 'perfect': False, 'permutation_degree': 35, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 5, 5], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 1], [4, 24], [8, 6], [10, 4], [20, 12], [40, 4], [80, 12]], 'representations': {'PC': {'code': '6907022355318770949422698690502715118376963184795841757444945477054875565110300399', 'gens': [1, 3, 7], 'pres': [7, -2, -5, -2, -2, -5, -11, -11, 14, 7708, 380312, 226914, 58, 28563, 19890, 80, 71404, 11211, 207, 58805, 21012, 754606, 269513, 107820]}, 'GLFp': {'d': 4, 'p': 11, 'gens': [12531822321003912, 19172920764866308, 32892940274777495, 6475832249954295, 33418192856010432, 23726635956891084, 41628676495383410]}, 'Perm': {'d': 35, 'gens': [313414318502940782496203121422782181705, 2622054758400, 25959064785554231654400, 625504449028695221150699832410112000000, 9736645905249681951158078338870063012, 921756376070079426563308108148533446818, 1224916221458541781210785220292666450301]}}, 'schur_multiplier': [5], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [10, 10], 'solvability_type': 7, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{11}^2:(Q_8\\times C_5^2)', 'transitive_degree': 440, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '200.52', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 220, 'aut_gen_orders': [20, 10, 44, 110, 20, 20, 10], 'aut_gens': [[1, 10, 220], [34021, 16250, 47740], [37121, 43410, 8580], [40941, 31655, 12220], [43681, 12770, 12980], [17301, 6530, 23980], [28261, 43675, 21980], [18541, 23050, 6820]], 'aut_group': None, 'aut_hash': 9002056612195110899, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 7744000, 'aut_permdeg': 693, 'aut_perms': [4753554965874463975574229130917948083781296547670378042368358005513049341595259722827464888821877193484138952654987290716168005234045615593206570637532094558754346813108658417769236758569947245626341617887000998924771895053884097394243691155017935473213936088830172101062004134143450487769919856509034093548261358628730909866765032059165885816127349930374539805212075229131748519465795330437148269101300377283440015452217730723892075836735696003486765136440756199886765981359997953690198435741648805100414396108786912524548872295865834506882814535841898367914838339002388672187664910963045789705645957533407781106574572603981216939028861052451062790087834078192363663261391132703891068063578201942372989888658696635647141667048649188407446766631290474542576577753863488898656705904075863979570197170916869924041992317919921774587027271225671814357491696553703087650760965556410264523065411682681919631709340090772800563613304553703424145463899211941737705799056487466242135747004553888987876586186508057224228354149110139797441627463874854234450022404176501263923770735036195691459989246694430083761764104165546240013427948340748628214747815551329831282578714703589804524671623318966823742362389033239920297722945231626106735855020919079051692704344286162310689652671305149466607934224542028149404507226787627767430084692811193237736928889068595851711292522272080168405616538425308920564566294160422131537632160042101695973793330873441253622915521229433875025549111501438717507421744475841500570007263497699077776931468709214915005946478842666898377614646811843463429297927127383677179596131991268722822231315254150978087354676266573067655347164166033542980072235482903, 17556988964946315374290605086347599800420714810612769771037116814252030475723969754613735713555592667855933249287117282582907653323008236764942432896258239267544108553646270044891024045639365954820250047077871564212240159306703725876460005224616161960882449772828513019739361295545117599540829684289158669616281306285703284752216625310849450265807472607531214217053491828901459662865532834009880781482751345256153612171045008373114194055262404070662994739515841308519806333265649513364825417722957641409572019834794705723871489769717785115268004607977416889764040759696896732215719988379311867678066911510886765913210132869040782162849241170300565800237083414776820587525596763991498885935370569226912293838284807070906039105584309578836814359683198785670919003374718415718727290595837234019100075381521647212734556219384119033948378720309118430975920111879765268463926555162918828486346528497063526898270065626212971187076462750258185954289180857395683911597835886496564099402046526576573588738347067371013195103789567790626642943851042848723932433393827326918915617638424212953924015360363465619224311582924478501435991002000622009225228233933417607172265016315670725343733161928558121688643176002538489546848782157270609808456143638423255975903921317162256728632676944211424760413255654097018916950990200940709131196808622403759091123901077208407814043005851799511021131179225576958137011979550563937738510232656467902197803255010160562216549308700150768228435001931708860174422795177147445266987974148154367394001931637713683172541013060787527101378761225876643879482432820252389646162092614363802324794963546353728199221007628144244079241656242399834612327460295424, 20936685535624510441327913561191799376789763228119687285623340626321781914229565135857528798675688916088798540577610311886830278780215758067472322050979917966990470647849075084012537085620174319933631179349325534007876208471894711125223572647305864772377631977333731253357549332749806090700417420029196597340542624800200307030020280623990348427764566550043078773818530780182617887954220320557865031156821390665368100631837409360597870326982317601440535909388693197851927820821661585208892348825909305200828316059150923057832775031256604701140114613698635563295500181319983429167013015290600617435052004452915553143986100902912119381748166148435048944791256996035785387252360369634004254304359952646629229052453341314001225181385526871359907455957101063420945743745818619473201653267213664306396058472027746820838695529360475884748867637457025374048285922868176712237755650937071062272348531733231857953628985607826672362468161573101544179776175541837160952182465951487229891953664068543675471394910217912574007970866019940704639642466353043148277438536123643255628377596308380694823493744568203248113297682823868360886252486614773626357770635184167555146493214543396792539460527644360675863665425441594687431913893708520294856538225949813768323493750497124726332186139822873244708247702567563917702062840727552777161603141272695298377322425744457851517687330092000999411528544609467406239833511416657293013100229766501592724879676444735937801476274017322258865199521862499534448948548421705838630073403677540387989117201722057131418631358226970745580439574708228414716220718812528367975013454197799545803524636792565587959615434040313752779371409896899320523549472751168, 9255983290281953016380646221893834375181531262768687544551125091760680355847414534668503947671887290464047841554204159073341143439589857062369075851069464870837835524577099819757190778635834493560193935523299381675768268873483022428629279664012404178769975015750792123427093742145008119086089869835583947945981049719367679654859717911109290366069664400242213760157371227784203032668818186124568581663052287897978372664512605936454589089242710471935405377324592132773266249356354968751591976422723758578064992664231660199821994441977171634421682047969080729185633246218382528147535693514364561222042560019233417016771210070480436556937658368782918433775297246650523614889856400499098945588282430154383615131137482368376361681587215341361041916738911479816070903638215964295372610853706692011938047286209729449468695520271296975912262600939330165957336868006737799988827762284745763530149332056513876438614266859577956633650798361982672494873391710431298062624571410153028301299866937402546536468623874634332312177434676013718634760531022815334770483289701784950533895094432334148703023642728163568357316328873592045438132405333579773852461367043475739796079090731801712684642970356199639113200679658610560173895380563454677868145685541920502917635298392922691855415736646166550339242256466279711280888793604825553327567768260508048317657169764439689738191310956504969109326984129975382875088788054315529102396007905315233146342823846294013753086500340772258200840228759340655084251875448826017004303463546338193972712851826477675485667959748786966773818652955671660114255671026511972781798141141343655471754859408227327157122591761029059752493486977386630946461922084449, 7308282666935527098230568311877765027931640618278135907040897783647914173966105613893392518052403542854705451422971960066273164998217670924442482839708812350361815791001409966654477713189833649802900038341752982712005755544067821019031641573161257442010999404376492043193763971119317127979461680375147564013146500871695445728881987227908512582198503377387924695270780532473396341757818022713354492517685999255958696792326876418838114716849978428853705602646038906242207326194239620127310535951247517407845777236060389274081300465113159969214381209433009739844277771172025158148242683034843225791803968000831227412427333684053310575239605272287323755677642771549398758449472168776755418980807626892669198936866588701185793483486855441742601305017565742295641946182352739652033689823357476190780543852330499319566177435841334024097233034599787856422829199048220163533343898665140773713868480153054089447089528036943549463863567871661066557219394059680166704868976321711620564208680709570102888445360620303242582190680474674995655016501251556805069364777833450994003550608012624714839405704293764515140358607026882880873994924949301647540320428623285508756580805495335022841139586525248575639532485012482742196262944367899750414523304746718530961814918826797989621266299937979477669457721003524242568532917253397959151674672850317514904175374816885167902874037835069490911009698150553047771741520517266885441271620889015701975147311127341179285015714691649553580830593102566531447767823696913164018844991198737540471295080028028080963729964673996562815008323913931866388403015013313184578389239923189826493874240780472576396263773938579099566577141553485100717474378917574, 23104041509391168559040024630074510676670783736200270068418305022518311924205826571061005731291246346848240678423037730453823623493545641902351289661916109719884245752706026080270728938157898129633291374397448018991732489468412276833958015403688051530788267479380823431198134557096765040368532151728467931246660011778578833728454168321714899827288471043006637297687713992986421907869747495198347500147247539486053715598812671791237911689521348027677432864850944738387237493819442966489223327853795524834113979196566751353434971593635501204452057554719810189474427777135637672836155390234995796451182861559160289236744964610606177584359318526483441603503281097087662115710380483445091886188191233056147857394459090828958981878440432831946242951116978416268083412107168603304915259327693382726191201832893460026963543471842069346544246616486081243442339054179737876855085244726908556786470071431860443371156874080833925871373871156535670889807467941491995367487510529424637551068009479405265150892383503969647577501748773363978128622488662762985552949679626088874475958235616359829449513084129589307761044039079258913308312993367709142139933712053654703445926905907236766999133827856442111385846280652244680582396356297406507938960229181500732567199659889054491161637817124804282835052263553442596569314833442899316205944388144389820443522722065363503468434847431303209722068079074709980530596754441383520193516094536545699315265931284428310837275394288857778442962677040823283797046341024161342320581791768392695996574390153590911901138167834205623750081530216273796391270045566326217373208182392463264229878251527425217681065396796251449460774617965487223514749592207192, 28308593445015274256584917278481382679923113395679720195130668327026538149066342985698914339644101478423034946816475374334122320775468841824479783932498331267101285908258458510191505810031724067459315593469606579816554132442258350585533639181695220411078096634425806648511581576531698998735560129674480025841477659154585634100439153779606978633952848150621728845221218837436835002983725885610815328677339793122480220676988563544236260279095736313199272512851604121335338511116820681965198577181707759532136778845702417709216552576689017839294662580165560554031436813596686255022775420701636277978053543755820280002087770499180561082288135942848134895533415218629150992639817816782656084156555555856703773769560661592844385198850274752201835764850998848192043597207274595108214817139142259384433529631710704127727176110559910181099503249429691166655273762538500548937299888235804588651263181732487366091478750744729657889599875491872658847415675486781075467811724365970405787440068803761405124295769075232536561862973436595874884325779788236401556780229468409467600116291750671679406383578208199063300423750114750273634357483444799472354116712761103427873796938936879891421477885518729523095849428470703805155554478831401003667970712613664864183078759664255988638292606479866080851897917296840050142046922606849098977510686330771727416486127053818914592954600196443057320404776366092453795988188828596192187783529313826902944108718161630049252419963043972232656999623220335484279068274033121926954755361610119665068561647263334132573684680065787886718713866759552544927673088612208090747047610367813431308462935876021610766106440041478417865116422032815172209835160904669], 'aut_phi_ratio': 440.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 121, 2, 1], [4, 2, 1, 1], [4, 22, 4, 1], [4, 242, 1, 1], [5, 1, 4, 1], [5, 121, 5, 4], [10, 1, 4, 1], [10, 121, 5, 4], [10, 121, 8, 1], [10, 121, 10, 4], [11, 10, 2, 1], [11, 20, 5, 1], [20, 2, 4, 1], [20, 22, 16, 1], [20, 242, 4, 1], [20, 242, 5, 8], [20, 242, 20, 4], [22, 10, 2, 1], [22, 20, 5, 1], [44, 20, 2, 1], [44, 20, 10, 1], [44, 220, 4, 1], [55, 10, 8, 1], [55, 20, 20, 1], [110, 10, 8, 1], [110, 20, 20, 1], [220, 20, 8, 1], [220, 20, 40, 1], [220, 220, 16, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_{11}^2.C_{10}^2.C_{10}.C_2^6', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 20, 'autcent_group': '160.236', 'autcent_hash': 236, 'autcent_nilpotent': False, 'autcent_order': 160, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^3\\times F_5', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 220, 'autcentquo_group': '48400.l', 'autcentquo_hash': 3341594860267235989, 'autcentquo_nilpotent': False, 'autcentquo_order': 48400, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'F_{11}^2:C_2^2', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 121, 2], [4, 2, 1], [4, 22, 4], [4, 242, 1], [5, 1, 4], [5, 121, 20], [10, 1, 4], [10, 121, 68], [11, 10, 2], [11, 20, 5], [20, 2, 4], [20, 22, 16], [20, 242, 124], [22, 10, 2], [22, 20, 5], [44, 20, 12], [44, 220, 4], [55, 10, 8], [55, 20, 20], [110, 10, 8], [110, 20, 20], [220, 20, 48], [220, 220, 16]], 'center_label': '10.2', 'center_order': 10, 'central_product': True, 'central_quotient': '4840.y', 'commutator_count': 1, 'commutator_label': '242.5', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '5.1', '5.1', '11.1', '11.1'], 'composition_length': 8, 'conjugacy_classes_known': True, 'counter': 10, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['5.1', 1], ['9680.p', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 121, 1, 2], [4, 2, 1, 1], [4, 22, 1, 4], [4, 242, 1, 1], [5, 1, 4, 1], [5, 121, 4, 5], [10, 1, 4, 1], [10, 121, 4, 17], [11, 10, 1, 2], [11, 20, 1, 5], [20, 2, 4, 1], [20, 22, 4, 4], [20, 242, 4, 31], [22, 10, 1, 2], [22, 20, 1, 5], [44, 20, 1, 2], [44, 20, 2, 5], [44, 220, 1, 4], [55, 10, 4, 2], [55, 20, 4, 5], [110, 10, 4, 2], [110, 20, 4, 5], [220, 20, 4, 2], [220, 20, 8, 5], [220, 220, 4, 4]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 4499712, 'exponent': 220, 'exponents_of_order': [4, 2, 2], 'factors_of_aut_order': [2, 5, 11], 'factors_of_order': [2, 5, 11], 'faithful_reps': [[20, 0, 40]], 'familial': False, 'frattini_label': '2.1', 'frattini_quotient': '24200.bb', 'hash': 4834653770333006103, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 110, 'inner_gen_orders': [10, 22, 22], 'inner_gens': [[1, 41490, 22220], [2301, 10, 28820], [26401, 19810, 220]], 'inner_hash': 4409101876861599779, 'inner_nilpotent': False, 'inner_order': 4840, 'inner_split': False, 'inner_tex': 'D_{22}:F_{11}', 'inner_used': [1, 2, 3], 'irrC_degree': 20, 'irrQ_degree': 160, 'irrQ_dim': 160, 'irrR_degree': 40, 'irrep_stats': [[1, 200], [2, 50], [10, 40], [20, 110]], 'label': '48400.j', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C55:(Q8*F11)', 'ngens': 8, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 50, 'number_characteristic_subgroups': 27, 'number_conjugacy_classes': 400, 'number_divisions': 120, 'number_normal_subgroups': 182, 'number_subgroup_autclasses': 180, 'number_subgroup_classes': 928, 'number_subgroups': 26048, 'old_label': None, 'order': 48400, 'order_factorization_type': 321, 'order_stats': [[1, 1], [2, 243], [4, 332], [5, 2424], [10, 8232], [11, 120], [20, 30368], [22, 120], [44, 1120], [55, 480], [110, 480], [220, 4480]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 20, 'outer_gen_orders': [2, 2, 4, 10, 10], 'outer_gen_pows': [8, 31463, 8, 0, 31460], 'outer_gens': [[24201, 23050, 37620], [24201, 375, 41180], [4841, 41870, 8140], [24201, 950, 15620], [43561, 37770, 35420]], 'outer_group': '1600.10270', 'outer_hash': 10270, 'outer_nilpotent': False, 'outer_order': 1600, 'outer_permdeg': 16, 'outer_perms': [720, 87657292800, 7983370, 2622058427520, 11652576], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'D_{10}^2:C_4', 'pc_rank': 3, 'perfect': False, 'permutation_degree': 35, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2, 5, 5], 'quasisimple': False, 'rank': 3, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 8], [2, 2], [4, 48], [8, 12], [10, 8], [20, 12], [40, 13], [80, 12], [160, 5]], 'representations': {'PC': {'code': '7448159017964649280210462135800156879979719781823346485195202299980745229619171587194770804638552974022515084503090039', 'gens': [1, 3, 5], 'pres': [8, -2, -5, -2, -11, -2, -2, -5, -11, 16, 995762, 387250, 66, 1395203, 543371, 7771, 888804, 356412, 115300, 116, 2133125, 855373, 44373, 141, 2266886, 640654, 103510, 334, 563207, 563215, 281623]}, 'GLFp': {'d': 4, 'p': 11, 'gens': [12531822321003912, 19172920764866308, 32892940274777495, 10886754631083510, 6475832249954295, 33418192856010432, 41628676495383410, 23726635956891084]}, 'Perm': {'d': 35, 'gens': [33, 44241577878396196997079087499778684913, 486985713, 313134520945894831102656125649599539200, 618129183500240293440253351151599104064, 938653834500120482147476612647429084000, 1243367581730349012014431516879132416000, 1547820794698224140158192228323836874993]}}, 'schur_multiplier': [2, 10], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 10, 10], 'solvability_type': 7, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{55}:(Q_8\\times F_{11})', 'transitive_degree': 440, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': True, 'abelian_quotient': '2.1', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': True, 'aut_cyclic': True, 'aut_derived_length': 0, 'aut_exponent': 1, 'aut_gen_orders': [], 'aut_gens': [[1]], 'aut_group': '1.1', 'aut_hash': 1, 'aut_nilpotency_class': 0, 'aut_nilpotent': True, 'aut_order': 1, 'aut_permdeg': 1, 'aut_perms': [], 'aut_phi_ratio': 1.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_1', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 1, 'autcent_group': '1.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 1, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_1', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [2, 1, 1]], 'center_label': '2.1', 'center_order': 2, 'central_product': False, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1'], 'composition_length': 1, 'conjugacy_classes_known': True, 'counter': 1, 'cyclic': True, 'derived_length': 1, 'dihedral': True, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1]], 'element_repr_type': 'PC', 'elementary': 2, 'eulerian_function': 1, 'exponent': 2, 'exponents_of_order': [1], 'factors_of_aut_order': [], 'factors_of_order': [2], 'faithful_reps': [[1, 1, 1]], 'familial': True, 'frattini_label': '1.1', 'frattini_quotient': '2.1', 'hash': 1, 'hyperelementary': 2, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1], 'inner_gens': [[1]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': 1, 'irrQ_degree': 1, 'irrQ_dim': 1, 'irrR_degree': 1, 'irrep_stats': [[1, 2]], 'label': '2.1', 'linC_count': 1, 'linC_degree': 1, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 1, 'linQ_degree_count': 1, 'linQ_dim': 1, 'linQ_dim_count': 1, 'linR_count': 1, 'linR_degree': 1, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C2', 'ngens': 1, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 2, 'number_characteristic_subgroups': 2, 'number_conjugacy_classes': 2, 'number_divisions': 2, 'number_normal_subgroups': 2, 'number_subgroup_autclasses': 2, 'number_subgroup_classes': 2, 'number_subgroups': 2, 'old_label': None, 'order': 2, 'order_factorization_type': 1, 'order_stats': [[1, 1], [2, 1]], 'outer_abelian': True, 'outer_cyclic': True, 'outer_equivalence': False, 'outer_exponent': 1, 'outer_gen_orders': [], 'outer_gen_pows': [], 'outer_gens': [], 'outer_group': '1.1', 'outer_hash': 1, 'outer_nilpotent': True, 'outer_order': 1, 'outer_permdeg': 1, 'outer_perms': [], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_1', 'pc_rank': 1, 'perfect': False, 'permutation_degree': 2, 'pgroup': 2, 'primary_abelian_invariants': [2], 'quasisimple': False, 'rank': 1, 'rational': True, 'rational_characters_known': True, 'ratrep_stats': [[1, 2]], 'representations': {'PC': {'code': 0, 'gens': [1], 'pres': [1, -2]}, 'GLZ': {'b': 3, 'd': 2, 'gens': [12]}, 'Lie': [{'d': 2, 'q': 2, 'gens': [6], 'family': 'CSOPlus'}, {'d': 2, 'q': 2, 'gens': [6], 'family': 'COPlus'}, {'d': 1, 'q': 2, 'gens': [1], 'family': 'AGL'}, {'d': 1, 'q': 2, 'gens': [1], 'family': 'AGammaL'}, {'d': 1, 'q': 2, 'gens': [1], 'family': 'ASigmaL'}], 'GLFp': {'d': 2, 'p': 2, 'gens': [11]}, 'Perm': {'d': 2, 'gens': [1]}}, 'schur_multiplier': [], 'semidirect_product': False, 'simple': True, 'smith_abelian_invariants': [2], 'solvability_type': 0, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_2', 'transitive_degree': 2, 'wreath_data': None, 'wreath_product': False}