Properties

Label 48400.j.2.d1
Order $ 2^{3} \cdot 5^{2} \cdot 11^{2} $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}^2:(Q_8\times C_5^2)$
Order: \(24200\)\(\medspace = 2^{3} \cdot 5^{2} \cdot 11^{2} \)
Index: \(2\)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Generators: $a^{5}c^{5}, b^{2}c^{198}, a^{2}, c^{44}, b^{11}c^{44}, c^{20}, c^{110}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, a semidirect factor, nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Ambient group ($G$) information

Description: $C_{55}:(Q_8\times F_{11})$
Order: \(48400\)\(\medspace = 2^{4} \cdot 5^{2} \cdot 11^{2} \)
Exponent: \(220\)\(\medspace = 2^{2} \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_{10}^2.C_{10}.C_2^6$
$\operatorname{Aut}(H)$ $C_{11}^2.C_{10}^2.C_{10}.C_2^4$
$W$$D_{22}:F_{11}$, of order \(4840\)\(\medspace = 2^{3} \cdot 5 \cdot 11^{2} \)

Related subgroups

Centralizer:$C_{10}$
Normalizer:$C_{55}:(Q_8\times F_{11})$
Complements:$C_2$
Minimal over-subgroups:$C_{55}:(Q_8\times F_{11})$
Maximal under-subgroups:$C_{110}.F_{11}$$C_{110}.F_{11}$$C_{110}.D_{22}$$C_{11}^2:(C_5\times Q_8)$$C_{220}.C_{10}$

Other information

Number of subgroups in this autjugacy class$2$
Number of conjugacy classes in this autjugacy class$2$
Möbius function$-1$
Projective image$D_{22}:F_{11}$