-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'ambient': '419904.gm', 'ambient_counter': 169, 'ambient_order': 419904, 'ambient_tex': 'C_3^4.D_6^2:S_3^2', 'central': False, 'central_factor': False, 'centralizer_order': None, 'characteristic': False, 'core_order': 69984, 'counter': 37, 'cyclic': False, 'direct': None, 'hall': 0, 'label': '419904.gm.6.A', 'maximal': False, 'maximal_normal': False, 'metabelian': False, 'metacyclic': False, 'minimal': False, 'minimal_normal': False, 'nilpotent': False, 'normal': True, 'old_label': '6.a1', 'outer_equivalence': True, 'perfect': False, 'proper': True, 'quotient': '6.1', 'quotient_Agroup': True, 'quotient_abelian': False, 'quotient_cyclic': False, 'quotient_hash': 1, 'quotient_metabelian': True, 'quotient_nilpotent': False, 'quotient_order': 6, 'quotient_simple': False, 'quotient_solvable': True, 'quotient_supersolvable': True, 'quotient_tex': 'S_3', 'simple': False, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '69984.fe', 'subgroup_hash': 6506385555687228630, 'subgroup_order': 69984, 'subgroup_tex': 'C_3^4.D_6^2:S_3', 'supersolvable': False, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '419904.gm', 'aut_centralizer_order': None, 'aut_label': '6.A', 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': None, 'complements': None, 'conjugacy_class_count': 2, 'contained_in': None, 'contains': None, 'core': '6.A', 'coset_action_label': None, 'count': 2, 'diagramx': [719, 509, 880, 3054], 'generators': [74552088921494400, 497125975455214583, 1482411000, 273868160173941327240, 4103670016102320, 300820665600, 22056933293259420360, 879340827866723043253, 16, 1482411023, 321217635742324272840, 2512139796684120], 'label': '419904.gm.6.A', 'mobius_quo': None, 'mobius_sub': None, 'normal_closure': '6.A', 'normal_contained_in': [], 'normal_contains': [], 'normalizer': '1.a1', 'old_label': '6.a1', 'projective_image': '209952.eg', 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '6.A', 'subgroup_fusion': None, 'weyl_group': '209952.eg'}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '8.5', 'all_subgroups_known': False, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 36, 'aut_gen_orders': [12, 12, 12, 12, 18, 36], 'aut_gens': [[56348826589715068207, 56470409094976537680, 109495301021054299562], [671969488780430316840, 77001517697232845536, 272652449890101902053], [56347800207063418103, 56350896638040345736, 338363567591272766650], [484846220222188812007, 671971282500091474103, 786827305393236540861], [818602649703866368223, 818624734737966389527, 772748025127233524650], [193366407034316124007, 857920450806341411063, 628980388521126129381], [75940487817749750903, 467605657438960048687, 261714356211970413370]], 'aut_group': None, 'aut_hash': 2015464893847043307, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 5038848, 'aut_permdeg': 540, 'aut_perms': [1819181001482914255654878351808368931067172576976863974823527899072547804747734909399102553288798602806815048122183447953156543401938974872987063138396880552932317748260036697254657591024380246295452195888716642756795231209032155957763851183835165468666531762623592144130020797908161057741491212091687706959457760687050404466842121041914270458070252675357827623541816205608281602440206937760325616674045028238362752991951807744983692443987722962964497557786893528094010541728713893631264718107783203411207371127621062159972399055634550310702768094117356864892346105390118794350121996526626460353019991240338239468250556455831211115292017670777477286698114410431806913506797649021733077782024751123967568433767851642374298396713295424135192599574543261999531259296307106537488848752348026588783629486026846050683152285137067952705453408669767145780997205835332859205020209008806115975010556588928328327696546955539545171055769624273446998730411386235094449937145401448956280116226199200636329809911948456824488040212306615875838968399376154891172250752472474075554365808052944939286947217815813773409037700959969450816408019553078457818960288971744163589519153653546380616616637346692646032514386006961387972435451430583786264229619513121069390, 4180318958119319779927798945218023018828747554644150471408091546569499878250677964790484855323975038374511973490920479748847279669078797230072600797733159177732244701399466840023978746901198185661933079497467891252141321130867876045589576260676951805066229305390354202472373450355504176262598626674064687929513249201016977661657161365226195230676634183873873510443348323189190933987221386813728272696840162614793447708337066110336218887835765878248369457555035605331519502984459547462637586372827646078319441373028887635822722275119190214735928709943074112798670389120699269267599593733500857429390175599288930715891746545326836467130014160701402296498895165001942262082962121417336371878819141295876193252957081866762248242666997880277988745875240139292802187577211326135612023571165497630270518703657883409617855617480447766346856162243759947670654928913229566370057864675855569321000345356663969605870188783269304072358505622306806558657382808284923192489169726185743496501392602684323026979686243410166270314690354794577847563164816685303394182306446330888880957592061612848852315478546817260515805812392280197823364719319972445095927695153354921245820838050607605298754490181251442891462176075394725569929143880103497499223357306393689381, 460988214277657150148334173374201519656143195584355791670553738773701903897554101111049266456368876513896051741502113891284377080931592527332089282287786324140433907667405494813422672421540405193871392688403949602164817289531334829599561620456273701238611393789541989895170357830470617422933769510350076066108380890286293357891263748413359079521520526508353269282553140148898875611377191562397052066437925561072392335620976953737968136737096489096569887443172679242714491102243731724161594240039449982866372982098640038663191214864364262424261467112187311792787286822434782412460684665008819821654356710295166327259278380321361133646338584186168451975823003770805671917967129840605769143153299853032016856551632898998921514762361096796732178257237760489356480568146775956368135247314772223489335415740450365991412636794418885986280621640152477987887392231379164005641484719772427648591394585018798740093643507835380107960435972294614605509584386009765925830768305125561336749041378804790952426737301329567571618480288531887556480827089930380794164001624930305838598759373531020320893914208616325506797292767566494127780453929870777762385064961725050477641130382231263930156688251235023344182024798129596647244590417632099976321198344529488608, 2768069010278745232498641107067199036415607990521253947184523764343761690559435890015997126953654157151886216432735202309376918869694345936133185067363672848549132826551153451634086706539004086026699101059614615612279604224136957375576842646044597857053850527562474240874974255731948805975287870233102904840786324127609532882353366157316292763872822788006726072314068091515021787179259257639066404913646634780780992935405824511857785109782878247359509803575737945341186927585080998212670163597396238807596097799010159998500774127741272989009166157037442228224725583709623105367673490019344509517031114828051036180200678201070699104254259343586615746780561691637842393726607405377212766921245271188317500438656123304017882268000692715948323602202107001189979030331961499977604250813739565117674403734964907614182485238920112116292637223903563038387959756575094225949653788986965120249276617140889779784836188156426846471413825277865762135441323186285823612358351140987574128710493771562204316507705288173668544071397730471659283120481306779770954542568375582593034676749761629210545575627888850164680853534204215337591681156944634895316442334918130130926634998916344158660233996471875898136480096746161789315435985849620753490594472782626482251, 2257504374469611550353810466345634197854861243888140762049285682383294203570842722697111691077407919663070788684755645771095135932054050312146611738593148775263950563150757003633651205259142435685468110252364969821859695708053533762023816600240051985189687211115118484821678537446191530602425846679960200155165396079038744336588292361042449873689195397922069834140763986392407472916620294080601431909012892842988674222694746325289405143766356037407758342163602810963569544486330697774671624227672911044265450066209067943543623706578659204526180127456145230933979973536589433054394734235897773570857469928820650118477619938551963021055319720063749797365934042491003855450678115558176880649734386274080887165919692713091744683430389245165288570676582119757928691304593970817448802982133410943187532617892186834376976032626440055033508398641411024323012141213535827084554875449891370021878960808525125132215552948813124477330364322951608589481412711555007697229083376439686985955197419874006461381274655184306364348948311324752352927604110846559302037532694339390629800484657500087444707439036467450943961110013555136186330011879722096231352282245358547904412079679337576843971885236075997185084798426045565590807336324139458182885022249434312393, 2788417210668192175934620614303485255588394302058201061478790010625967441130874846451770660995571741617247626671093921056276900334059966301830078935563929309111807197114083165378438914589927181450774905790041894937055418685549182304612426795149600160292799633027240697209496573840253584700358141200989906694056898484059148830128367275213370804205010209373921158718429006869534410507878456978560157003581608313803148355409127115797987198327670292133890589692547798889350374988361701402976440036814319440796874641382385181581637907051591575747498428843898841131950968715527104073070628707070456772009706037323447352807182081049867780023878849812857356466851546426029956943875575770324259583832395123831572416041075356004374436247823947583272926292741488121106064336940446749702737932113810710214706722957899439437492562765495828346325220534091778431263747894284910290940050354354244021733812082537841125269300077909653198032903017357398158122336578898603237372295870512014341918594867366026602900378480191033869998983641402727584650420687404351942416289220700121016483647842257279485383836302196441200510501542842374544189017482640010877316458967519356487499119320113398257647757142309951944200163039640713107806559507525435296407500701972688271], 'aut_phi_ratio': 216.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 1], [2, 54, 4, 1], [2, 324, 1, 1], [2, 729, 2, 1], [2, 1458, 1, 1], [3, 4, 1, 2], [3, 12, 1, 1], [3, 12, 3, 2], [3, 12, 9, 1], [3, 24, 1, 1], [3, 24, 3, 1], [3, 24, 9, 2], [3, 162, 1, 1], [4, 324, 1, 1], [4, 8748, 2, 1], [6, 4, 1, 2], [6, 4, 2, 1], [6, 8, 1, 1], [6, 12, 1, 1], [6, 12, 2, 1], [6, 12, 3, 2], [6, 12, 6, 1], [6, 12, 9, 1], [6, 24, 1, 1], [6, 24, 2, 1], [6, 24, 3, 2], [6, 24, 6, 1], [6, 24, 9, 3], [6, 24, 18, 2], [6, 108, 4, 1], [6, 162, 1, 1], [6, 162, 2, 1], [6, 324, 4, 1], [6, 324, 12, 1], [6, 486, 8, 1], [6, 648, 1, 1], [6, 648, 3, 1], [6, 648, 9, 1], [6, 1458, 2, 2], [9, 324, 2, 1], [9, 648, 1, 1], [12, 648, 1, 1], [12, 648, 3, 1], [12, 648, 9, 1], [18, 324, 2, 1], [18, 324, 4, 1], [18, 648, 1, 1], [18, 648, 2, 1], [18, 972, 8, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_3^6.C_6^3.C_2^5', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '8.5', 'autcent_hash': 5, 'autcent_nilpotent': True, 'autcent_order': 8, 'autcent_solvable': True, 'autcent_split': False, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^3', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 36, 'autcentquo_group': None, 'autcentquo_hash': 1960495289627526838, 'autcentquo_nilpotent': False, 'autcentquo_order': 629856, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'C_3^6.C_3.C_6^2.C_2^3', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 2, 1], [2, 54, 4], [2, 324, 1], [2, 729, 2], [2, 1458, 1], [3, 4, 2], [3, 12, 16], [3, 24, 22], [3, 162, 1], [4, 324, 1], [4, 8748, 2], [6, 4, 4], [6, 8, 1], [6, 12, 24], [6, 24, 78], [6, 108, 4], [6, 162, 3], [6, 324, 16], [6, 486, 8], [6, 648, 13], [6, 1458, 4], [9, 324, 2], [9, 648, 1], [12, 648, 13], [18, 324, 6], [18, 648, 3], [18, 972, 8]], 'center_label': '2.1', 'center_order': 2, 'central_product': False, 'central_quotient': '34992.fm', 'commutator_count': 1, 'commutator_label': None, 'complements_known': False, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '3.1', '3.1', '3.1', '3.1', '3.1', '3.1', '3.1'], 'composition_length': 12, 'conjugacy_classes_known': True, 'counter': 135, 'cyclic': False, 'derived_length': 3, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 1], [2, 54, 1, 4], [2, 324, 1, 1], [2, 729, 1, 2], [2, 1458, 1, 1], [3, 4, 1, 2], [3, 12, 1, 16], [3, 24, 1, 22], [3, 162, 1, 1], [4, 324, 1, 1], [4, 8748, 1, 2], [6, 4, 1, 4], [6, 8, 1, 1], [6, 12, 1, 24], [6, 24, 1, 78], [6, 108, 1, 4], [6, 162, 1, 1], [6, 162, 2, 1], [6, 324, 1, 16], [6, 486, 2, 4], [6, 648, 1, 13], [6, 1458, 1, 2], [6, 1458, 2, 1], [9, 324, 2, 1], [9, 648, 1, 1], [12, 648, 1, 13], [18, 324, 2, 3], [18, 648, 1, 1], [18, 648, 2, 1], [18, 972, 2, 4]], 'element_repr_type': 'Perm', 'elementary': 1, 'eulerian_function': None, 'exponent': 36, 'exponents_of_order': [7, 5], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [[12, 1, 12], [24, 1, 51]], 'familial': False, 'frattini_label': '162.55', 'frattini_quotient': '432.755', 'hash': 6506385555687228630, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 36, 'inner_gen_orders': [18, 18, 4], 'inner_gens': [[56348826589715068207, 672124946530191130800, 626521739710383095901], [467636638859946224767, 56470409094976537680, 525914934293212103642], [601485438048787288936, 153581046180931369440, 109495301021054299562]], 'inner_hash': 6895329934315343326, 'inner_nilpotent': False, 'inner_order': 34992, 'inner_split': True, 'inner_tex': 'C_3^6.C_6:D_4', 'inner_used': [1, 2, 3], 'irrC_degree': 12, 'irrQ_degree': 12, 'irrQ_dim': 12, 'irrR_degree': 12, 'irrep_stats': [[1, 8], [2, 22], [4, 28], [8, 5], [12, 80], [24, 100]], 'label': '69984.fe', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': None, 'name': 'C3^4.D6^2:S3', 'ngens': 3, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 61, 'number_characteristic_subgroups': 31, 'number_conjugacy_classes': 243, 'number_divisions': 228, 'number_normal_subgroups': 53, 'number_subgroup_autclasses': None, 'number_subgroup_classes': None, 'number_subgroups': None, 'old_label': None, 'order': 69984, 'order_factorization_type': 33, 'order_stats': [[1, 1], [2, 3459], [3, 890], [4, 17820], [6, 26430], [9, 1296], [12, 8424], [18, 11664]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 12, 'outer_gen_orders': [2, 6, 12], 'outer_gen_pows': [0, 0, 0], 'outer_gens': [[818797452882877980127, 818797669292963001720, 725032691499755093162], [498015588400808734927, 496920766098529795823, 129023294142635400242], [602216019994802790360, 193304862932321147056, 124840368088737518890]], 'outer_group': '144.162', 'outer_hash': 162, 'outer_nilpotent': False, 'outer_order': 144, 'outer_permdeg': 10, 'outer_perms': [1992360, 458647, 453733], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_{12}:D_6', 'pc_rank': None, 'perfect': False, 'permutation_degree': 22, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2], 'quasisimple': False, 'rank': 3, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 8], [2, 10], [4, 18], [8, 11], [12, 80], [16, 1], [24, 100]], 'representations': {'PC': {'code': '9372022037964788007992841084580977707540283743512582399914230666635285847955852396762758984721732870679238824940079432179634343666380802390256771895386664948845561979477731183279428490982750468205813473984381745494403756719', 'gens': [1, 2, 4, 6, 8, 10, 11, 12], 'pres': [12, 2, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 176328, 1435057, 61, 2371106, 1743843, 1538223, 705771, 135, 164164, 1607776, 925228, 523589, 852785, 937469, 254489, 209, 314502, 1971666, 545358, 430458, 481543, 2891539, 595615, 275371, 283, 749096, 2303012, 1268168, 615644, 852489, 2911701, 994353, 398925, 4561930, 3025462, 575026, 760366, 8377355, 385367, 1872323, 551279]}, 'Perm': {'d': 22, 'gens': [56348826589715068207, 56470409094976537680, 109495301021054299562]}}, 'schur_multiplier': [2, 2, 2, 6], 'semidirect_product': None, 'simple': False, 'smith_abelian_invariants': [2, 2, 2], 'solvability_type': 17, 'solvable': True, 'subgroup_inclusions_known': False, 'subgroup_index_bound': 54, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'C_3^4.D_6^2:S_3', 'transitive_degree': 36, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '16.14', 'all_subgroups_known': False, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 4, 'aut_exponent': 36, 'aut_gen_orders': [6, 4, 12, 6, 6, 12, 12], 'aut_gens': [[5393457543661705567, 59018593227322993333, 107580278241953401703, 163749987579054967221], [27424444062770905696, 188213897708719516930, 590364892492071753023, 515951904674640687141], [821360693276132370616, 461095454043691165450, 843302926060969621680, 445602041598254567061], [579558990260979843856, 545906116061861311581, 694007803813265596807, 163761725253178524261], [333558146813363499007, 433488142617382189573, 17156251658634647183, 54552038512223427842], [141108863704931364616, 59028198147811751882, 222496789026236986927, 643460645721110168301], [208395139727459755456, 619016027253672872890, 703739329114287968640, 725397023075214834842], [326298274000758023767, 475709583097670359101, 105195791861680435216, 190652135415243467061]], 'aut_group': None, 'aut_hash': 791255034402504792, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 20155392, 'aut_permdeg': 864, 'aut_perms': [2649093562764354997220606061557803327796797934250198581857905865615568102287914286125975085430336790919276920545435888942824299323837245443682099982059063140970495866475932945928035615599564155059007900673364736317547320340971880964326397819324999569376492704861588911796183835694089992417885895868427308279917983786935339660577953361738994339295000083427231844288430909821997529266497473503258913091949744667605345274083419307077623924307679540470190107690141304067033998737115987306985571303606364830708696324788443954467689425276576685740141411562378106167799033259915236543411651105375487676097866085402162671562555584709192298930183604047112471906928951245644181736231612094536920778492891829028877431039183231847178495861133223479479739076244214307989229671647774151363294502712011258951912635281204207495562079234059023224524839689699960866665207804327145819933577987484301880942183115471210115630228943080254283033773508136735256293765852838060678250455741054357505479698146245498228728673929432272493287840133611207609212213976857708089429941214914408277920017875348797550314533064780893206519296538942382865480123094827186210347005521321593723898590187916714261318762465928803203408942860930992097667888852659553910326067404374481250987806165796631068693459302474029490717799299021076892340278325127775400645553880552295081331799606751704730299204802302209406157209290814015190152209677774569197476848245312703001371963469285215855198197839406694242658603888390399458667137743699054890204716609066557036571300659143095354993705338140653782472713656034044944683820538634886417890824918481586361135996363267261675926869977262271712406716427947133246242171075983520220255383824994668647628731042136800542377501561815513371841580990577821230328680404637729920225515521187349992142060787438701082391006470359942418029295712512709442997039908150463269210615236122352318766446047718912893083932731314152748539452669351389735101914186644890962869913946145107658376653199400715955495522710752377909955767437874336505443774347482309278323475916847247143491182521121624941338634303486216396834683759167041046414819695396810590919748046882514789494778467026774654047, 2884106920123719062118416088829577753272698083854779198761972403897403415046575429848635955361851795639620468592556909904572743744965563176390584464790869615523768010505266708441782221081716964201913173645930751873901557275701024289350028360450454883413437412126688951034947541178314653773873520166237477171942492844675443293514362905879354838476882587886830037841741808665982260294166191987234645123948531922535969976665962843991348565802901527895160138742325524048961323591713955994555763900958923865472049671672008708038088829396664882252350568065655531263206008407731171803330427343370101526907799945549910045568046612260149930958537468056926657056370342051160131008144522793649252122689571207995939830394246717069774432907760357956507136913972597451649901228624272983362028418802049099970543450946824285710398142270613268248447921532021108061108253944463777898345154196632802313927593048234799276435333562932667108283446016499348977622945820149250570948435490229294395206692558274705342986442818901594334804569197764387283982698381654466452786519973843766180285084301608207018326795761796028785718859930446004786940777039586235579546795012790908023900770847402460287389377544312733481942223987518849749603622534684923757564002109768578640375966427223491705379626510836854062911009475481805105250672992825470051843831239516307128873108043051236230431219286047935145308851693084584136247705989064283734291219673364248230184058886046299520315339566491631918695576651744537817522282485754046517051968963192662961080146621505567377959947141926503154095458029630353652202927538482798101773173929111197324368629276240036047248193350982938083977419624526932492582876199108474235867361571372722114273031690447589932605065214984396924865256698668735022149044555656576632152078947866534199802175141197921539791143097355328152917729994837214759897188331310922743764478420364663541447724727427418036952851476438688509721764671792050736281784279638600270269205978718983415583171361440029415873883625182856786066200385391813762744778627764676148034636370626672559387018385033852283905388764680147723413282445795150482619104830385088678517841801178976812924487672809058774418, 1727728389117149385565685460055962760546404846959280009789845096605073232507861900898915923443133932321349368623568995523538301190815847607654439048376523608167820783056274757669033815431671640636631182726126686796217635066502508776992521422577651077121218938594805242124488376054732737094919636085738060350935519349154525442666908884227537414976421234680162549162614365613373924192351711983160329326107482768526439804543706524098444720212560118400129555405084849902722042819128255318604236391718283792288984575990127461691417631943278237776585073219885514589035014704818334896530337898556640784625141873175403872308298074353383796123902652045287139885153341018793843575902263748470358607768269419171028500646560468524805459784927268578893988569147856253420537833303151150305645544069157001666856456562348666105611639710796373346145572038520827619285780899500151228893333466784480643682577483640390130977663357201232773784565078477698958648170094938922055700145812724643413645890757613365545227913410566271205215437614019516510167840738399561987244870223629288095259830773577120540345237591724508189379190836707116437835377234971791616339337882839081059810069970667725292668418503429760481788465146899579603672797298538767445218720544043730603092466430401624204318464826526804135918549140974303718873618996644938342268840083177642163136247032148444995507875978605934082484300800727370346022428135152603817680505987575838069453788076851241450319596260837684351670651107813221271573468489771473291804677693018158341836048635827933977588494342639814334451538964629684442335524949698119180777160594678826943771979451711591139383104184140878516505588239010732358183031730663343200484028330938788960931258913202865263333697782927515876755996036003627956756001366039133442518360738009670356174870421370424905263933206489593908944812909885378377737472633869429390458257444257525732182011380854614760839676562706490980688141724704754444488566266405009345003000540654007948690705557236901852570582187768503087060158256354344373065345662225277652902231153161094575900411760287201640928003942837107938542955248718663111069731425539052731349266655501041037957002697430957926377, 2672279365596288382760991113912223114363675362508311531224172345085103481808868995097085309497704134020378057396172480462164730489979432315358120264829049336448393093122825817731710948010776293779383306575768848065346323276816504686870957736433067747198029590727054321610903991141842654215424451705447180369660870324379872499674363782379542846045223827649060774817865277558677202537223646550609656934831585774057338124340214232312755869655236959969827960209107824331413327423991350841795629891924507134276994827883656274675963596325416488795131070205663296857331181636292583542473176442860330188882800494609294257004381022687340283047917461713130476864706699397214964440042620371540586036505359769673303663439727360594687342874265088244239722859788876462260239799364416867017117698958901574155552880689016173228216727272030150365212953404849459425658202485847571582760063334126633189070433555618616467604964725519269244090954660133702636216595599070562654987394115513660995374660401583635809385167883268017826782460807581533285598493669216885865183451829695248454800117344787008772934653300220038700536993207957865665118659584401107156215202945851610390698969183874601184518171331146838129760393780354296367859261863984455150820617495390911909949710127702140017940657522954411828930673866591163859649631884741725726232890353980080711305324044272545831694267384282972831156091892927218484570109463746259303905638191135314530006513958066073943789460059208726447017336779230223784216011286944227498693790111050230429999485318855213860564036409550496451905798958779100149970408306511699331653677449726403907813779013712102914307105914864313352677684064648975207003104479032491024039438729883414972898498544993276747648389856024936313662634572616588237961473342780196776714544448015109005783706878252848241245529314788670300665890308328372692709642797722557663012186148998292063867423822861688694621804037155078691920614305273709087613670259262330954946753549337339277077561620824433286829891017365815004013118642750306696059945685504951731521892817418746969722602222689169913534517110501294516909806961894620099448098656860196264242677906826997090556184648021180802582, 4722971694378810408607029986673828937083612941969980753756841909258162945780984217662647548851329615026231402772870396791552048620215181885292776700881516524670672065049630358024632077308739723103898649719678695040437638715485258880113198956750115528902747223970303019207776288072823953831595398794674189775307069071623558083780168310161448654525866544992118351876708248946921926953814226405329869452353586362141914689066302894704187426882544399131194940605603122663033885086900555589718342919368936696381510476516502656392636685616197167919867930246990389585227790254645400556827343456082124822502317435204392704224470185516223875379463309219749355051070039257351231693201173847472032151638557546884070738895473264690141693057887836605295987491989959816709315347120045946344152047932971159811209723394295191517083890476341964599241438244926684628698051874549157460467345668693204448238686496886578505555101764061169657292117672314161756427093803141138863071571449732529204801218599075622008667157072940769494480076891953433593576440765042376346750084238312990261644487432969953477319907574347652845779472329191334157504067797617462655664124439897868758524443506690045649588170917853599056115771928788311240294817305409887050831087468155052379342697852101945948932308515750651369845486281442067335792549059259482175379327345901908557514833740893562595498741752433842264322848403956153484367252103245447744858566054352176289010666562430338050158343937261337247462766892246624078609408970343819513727094959106686781339471224627996829275437568291677540765180895983771448779008330649849500692233871632513509966730999604118420946703208963090898044329943845862174601240082235407442538627937511516645836366038073293013287758801405147159903832370557212934558381288556555157328381246165689971317859262664304839456768215038079769754348934549146199647349378057127993279240679469077237116583441135315577305240700075756562354663984068565934082104307939887200196992120313090701810990312315650940896509518267191908332701571463838773160871437235410641758088593869621785363024828823788419951846520465197169691267400329247451101648362364936401919681032769409136585866957883170531608, 4842917011653162290688589996743710549603381154835264218849905497869534690063060545068575269694782119834440424592514934871995962084635470152416890293793112332741937907526996063441077353859418569385918012672378165595683542553072610984647077387946289346298284997928924543331426077847229909369841681618480288221674199898579625346576273119732841761964538000152815026566767137033854719398258249917644811721552539688048637579584409834060337935027605521514684751183061831138093927830303278859768983923002495222556217393377118816123398669713523475794359471409828153296003194347670261633120752457951679427334874184660985788135789828649286480376415991936530549157738301306818430097813014850129283692383241627412731984033852647971794951919056539590860465871465177113857388215400649417066062428370617906388952694953539180851745517704296004416993359624246416104239332521458229801484051703292332146991798845902790887839233703216283726775189848743386874384181016762167221067864832352555931525950095205211801550265162377326095808126684741872537173560941943640091597017575998244710229374976040022159279266600358214113304800899372540322297493636001931200465422971343413218477604423581973964632962146516385788918426949421534900678326547940356152634374310329606886675524180447518713300756698559021084594707729077775249207448272708660823287811765682852896490010088230975947471752031681422783216329805829008883967746846358518915219931132373075476453033095832668557841690402090837006302966246313412138384480678156591077699654658294745900026867750401804809944199474965805347844324563026093255655250829788735643274340627567047739402309885318889235091706937411990850000202943502863902830422930960938951927820027411617214360299731222671526098717574770432443075294564201297658901813783718442497336431405600033245433980544282494141050860467292875755034984642702523601473046393641643036829379002163920901370069582379010666857120315748502579877067746775912142412699531575798752291646373428674574591428584246772443457312112373545547485907765304622810674894314792563276049794611303619360025643090087267856362284341273130416984618391584109181424256409290635929273566855548307143075194002918173885169, 1837906165824413843211940273511498670394093900492007420388229273928331510632554829286443803585546314153024363376940655759301426870001057672436975886470735514251749045384875419614072178828409544845375412096951766011315400277198246237310135456058507341610957524917803803632275178939325554219801273027457209894674693367296252325962837382865546488451924849463399952448005649665973938729232870907552867947055586491342695221350499887951057580186306998220246042523209171289315108684564784721262907274456171602680885456876330092303923099851224739447873309526264837035071434389286969381827225374888738395925071331716782846133907353474557848904031592620388983268657646206299013751295798614293128030371116092043640214155100360811237411584401659585413190694623208632953097724334310792059834359298232151963310495836082118365127129041961140021053509757467731789914980815641301302518895271400651891962996886111560416093888266728177095849029632543468084527465350173600523936585558298895844048888110208415977052822634177624668928625237871393508063546137688141937753082555922741998995871385347856582112321126844689953353580460497856000829614880280349100858234189090657233420888230820499927203721452250696723091913391651915024656970835128752079387382712593848020841433492286957222995963261717574545644968762678102250831238426090308288704148116055697052418333848013523701975076610535353668798170132767961732502662556548112734570059563642960793369456018839960458971772982168443111634884236073472413498832846636386307893617247546731502106098925472780896710478549811654779231017871940517958735840357452676365845075628429033383599715183488397954900499126390964582943731796546942092237289995308268025508491325547409381247926334008311506149740647386704242708687974129184793366092667731589943922737273155831195687008184743263759637648551341880350211078759210534462195049220543595759385078815166867403719362306461472454678300228008622347916427898893841098655961956259848444761040806848494787387882775728790738425072893032151316465150391913145925618336609265572145257859557344642452977418840396720645506194470948046010094764798342682050953158822179364046147673460177736283440067664156996539492], 'aut_phi_ratio': 144.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 1], [2, 54, 4, 1], [2, 81, 2, 1], [2, 162, 1, 1], [2, 324, 2, 1], [2, 486, 4, 1], [2, 729, 2, 2], [2, 1458, 1, 2], [3, 4, 1, 2], [3, 12, 1, 1], [3, 12, 3, 1], [3, 24, 1, 1], [3, 24, 3, 1], [3, 36, 1, 2], [3, 36, 3, 1], [3, 72, 1, 1], [3, 72, 3, 2], [3, 162, 2, 1], [3, 216, 1, 1], [3, 216, 3, 1], [4, 324, 2, 1], [4, 8748, 4, 1], [6, 4, 1, 2], [6, 4, 2, 1], [6, 8, 1, 1], [6, 12, 1, 1], [6, 12, 2, 1], [6, 12, 3, 1], [6, 12, 6, 1], [6, 24, 1, 1], [6, 24, 2, 1], [6, 24, 3, 1], [6, 24, 6, 1], [6, 36, 1, 2], [6, 36, 2, 1], [6, 36, 3, 1], [6, 72, 1, 2], [6, 72, 2, 1], [6, 72, 3, 3], [6, 72, 6, 2], [6, 108, 4, 2], [6, 162, 2, 1], [6, 216, 1, 1], [6, 216, 2, 1], [6, 216, 3, 1], [6, 216, 4, 1], [6, 216, 6, 1], [6, 324, 2, 4], [6, 324, 4, 1], [6, 324, 6, 3], [6, 324, 12, 1], [6, 648, 1, 1], [6, 648, 2, 1], [6, 648, 3, 1], [6, 648, 4, 1], [6, 648, 6, 4], [6, 648, 12, 1], [6, 972, 4, 3], [6, 972, 8, 1], [6, 972, 12, 1], [6, 1458, 4, 1], [6, 1944, 2, 1], [6, 1944, 4, 1], [6, 1944, 6, 1], [6, 1944, 12, 1], [6, 2916, 2, 6], [6, 5832, 1, 1], [6, 5832, 2, 1], [9, 72, 1, 1], [9, 144, 1, 1], [9, 432, 1, 1], [9, 432, 3, 1], [9, 648, 2, 2], [12, 648, 2, 1], [12, 1944, 2, 1], [12, 1944, 6, 1], [12, 5832, 2, 1], [12, 17496, 4, 1], [18, 72, 1, 1], [18, 72, 2, 1], [18, 144, 1, 1], [18, 144, 2, 1], [18, 432, 1, 1], [18, 432, 2, 1], [18, 432, 3, 1], [18, 432, 6, 1], [18, 648, 2, 2], [18, 648, 4, 1], [18, 1296, 2, 1], [18, 1944, 4, 1], [18, 1944, 8, 1], [18, 11664, 2, 1], [36, 11664, 2, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_3^6.C_3^2.C_2^4.C_6.C_2^5', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '16.14', 'autcent_hash': 14, 'autcent_nilpotent': True, 'autcent_order': 16, 'autcent_solvable': True, 'autcent_split': False, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^4', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 36, 'autcentquo_group': None, 'autcentquo_hash': 7482597521743094414, 'autcentquo_nilpotent': False, 'autcentquo_order': 1259712, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'C_3^4.C_3^4.C_2.C_6.C_2^4', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 2, 1], [2, 54, 4], [2, 81, 2], [2, 162, 1], [2, 324, 2], [2, 486, 4], [2, 729, 4], [2, 1458, 2], [3, 4, 2], [3, 12, 4], [3, 24, 4], [3, 36, 5], [3, 72, 7], [3, 162, 2], [3, 216, 4], [4, 324, 2], [4, 8748, 4], [6, 4, 4], [6, 8, 1], [6, 12, 12], [6, 24, 12], [6, 36, 7], [6, 72, 25], [6, 108, 8], [6, 162, 2], [6, 216, 16], [6, 324, 42], [6, 648, 46], [6, 972, 32], [6, 1458, 4], [6, 1944, 24], [6, 2916, 12], [6, 5832, 3], [9, 72, 1], [9, 144, 1], [9, 432, 4], [9, 648, 4], [12, 648, 2], [12, 1944, 8], [12, 5832, 2], [12, 17496, 4], [18, 72, 3], [18, 144, 3], [18, 432, 12], [18, 648, 8], [18, 1296, 2], [18, 1944, 12], [18, 11664, 2], [36, 11664, 2]], 'center_label': '2.1', 'center_order': 2, 'central_product': False, 'central_quotient': '209952.eg', 'commutator_count': 1, 'commutator_label': None, 'complements_known': False, 'complete': False, 'complex_characters_known': False, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '3.1', '3.1', '3.1', '3.1', '3.1', '3.1', '3.1', '3.1'], 'composition_length': 14, 'conjugacy_classes_known': True, 'counter': 169, 'cyclic': False, 'derived_length': 3, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 1], [2, 54, 1, 4], [2, 81, 1, 2], [2, 162, 1, 1], [2, 324, 1, 2], [2, 486, 1, 4], [2, 729, 1, 4], [2, 1458, 1, 2], [3, 4, 1, 2], [3, 12, 1, 4], [3, 24, 1, 4], [3, 36, 1, 5], [3, 72, 1, 7], [3, 162, 1, 2], [3, 216, 1, 4], [4, 324, 1, 2], [4, 8748, 1, 4], [6, 4, 1, 4], [6, 8, 1, 1], [6, 12, 1, 12], [6, 24, 1, 12], [6, 36, 1, 7], [6, 72, 1, 25], [6, 108, 1, 8], [6, 162, 1, 2], [6, 216, 1, 16], [6, 324, 1, 42], [6, 648, 1, 46], [6, 972, 1, 32], [6, 1458, 1, 4], [6, 1944, 1, 24], [6, 2916, 1, 12], [6, 5832, 1, 3], [9, 72, 1, 1], [9, 144, 1, 1], [9, 432, 1, 4], [9, 648, 1, 4], [12, 648, 1, 2], [12, 1944, 1, 8], [12, 5832, 1, 2], [12, 17496, 1, 4], [18, 72, 1, 3], [18, 144, 1, 3], [18, 432, 1, 12], [18, 648, 1, 8], [18, 1296, 1, 2], [18, 1944, 1, 12], [18, 11664, 1, 2], [36, 11664, 1, 2]], 'element_repr_type': 'Perm', 'elementary': 1, 'eulerian_function': None, 'exponent': 36, 'exponents_of_order': [8, 6], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [[12, 1, 24], [24, 1, 24], [48, 1, 6], [72, 1, 30]], 'familial': False, 'frattini_label': '162.55', 'frattini_quotient': '2592.fh', 'hash': 5861061776370282502, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 36, 'inner_gen_orders': [6, 12, 6, 6], 'inner_gens': [[5393457543661705567, 166957216531083822250, 309018245953667459903, 495783346533573779402], [564837757490524866496, 59018593227322993333, 321445546314025085423, 164492008917904645922], [333603319193850586447, 749726880812446578613, 107580278241953401703, 358663255587204842301], [586839495066246223216, 367512788132453427250, 840865401935624581943, 163749987579054967221]], 'inner_hash': 6564233059903904080, 'inner_nilpotent': False, 'inner_order': 209952, 'inner_split': None, 'inner_tex': 'C_3^5:S_3.D_6^2', 'inner_used': [1, 2, 3, 4], 'irrC_degree': 12, 'irrQ_degree': 12, 'irrQ_dim': None, 'irrR_degree': None, 'irrep_stats': [[1, 16], [2, 28], [4, 52], [8, 42], [12, 64], [16, 6], [24, 64], [36, 32], [48, 16], [72, 56]], 'label': '419904.gm', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': None, 'name': 'C3^4.D6^2:S3^2', 'ngens': 4, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 124, 'number_characteristic_subgroups': 47, 'number_conjugacy_classes': 376, 'number_divisions': 376, 'number_normal_subgroups': 195, 'number_subgroup_autclasses': None, 'number_subgroup_classes': None, 'number_subgroups': None, 'old_label': None, 'order': 419904, 'order_factorization_type': 33, 'order_stats': [[1, 1], [2, 8967], [3, 2024], [4, 35640], [6, 186648], [9, 4536], [12, 98496], [18, 60264], [36, 23328]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 12, 'outer_gen_orders': [2, 2, 2, 12], 'outer_gen_pows': [497084124609198000, 583051434130679678656, 690267889663496812200, 0], 'outer_gens': [[821360693276132370616, 461095454043691165450, 843302926060969621680, 445602041598254567061], [564837757490524866496, 382095825041505576970, 601460068728639945000, 498164817606285771501], [128998106827168729696, 884210670604511122322, 288603055825435704247, 188187013539694028901], [32304098586040938847, 424868468137781835002, 22078758743915344687, 497676817867987311962]], 'outer_group': '96.221', 'outer_hash': 221, 'outer_nilpotent': True, 'outer_order': 96, 'outer_permdeg': 48, 'outer_perms': [561294661562426644742398195844942356686751452768723659482015, 11494616539392570028685562161422277666689534141478727364087949, 11533108311790620895780788272872148098439619213691553146575869, 12402887702626976533440839407023515213993959105187538129888269], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_{12}:C_2^3', 'pc_rank': None, 'perfect': False, 'permutation_degree': 22, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2, 2], 'quasisimple': False, 'rank': 4, 'rational': True, 'rational_characters_known': False, 'ratrep_stats': [[1, 16], [2, 28], [4, 52], [8, 42], [12, 64], [16, 6], [24, 64], [36, 32], [48, 16], [72, 56]], 'representations': {'PC': {'code': '538110532104426739453645389170495643900569175734521104062965797400009094849251086591355468455167274303851282499985496692741020434944198864372903671485128163589325916597033946747826140701472992831809516994502381469796066181301957223687799423618119700210276773206541663985048328871290427585673422543671010682541576287756703585173258669542182367756063135945672824640471541698240922377767599', 'gens': [1, 2, 4, 6, 8, 10, 12, 13, 14], 'pres': [14, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 824712, 1154777, 71, 6086138, 3352512, 395811, 2033825, 5818375, 157, 25766164, 8957778, 2936252, 15262133, 7268203, 7077705, 2009495, 875257, 243, 37679046, 11219060, 4978042, 3358704, 1659398, 43948807, 10612245, 4540067, 926065, 491295, 315245, 329, 28340936, 23850310, 10133460, 609386, 272980, 709206, 35017929, 17508983, 453637, 151251, 415, 55085194, 27542616, 399206, 133108, 58689803, 10898521, 8134599, 524213, 1931395, 461745, 37005708, 36966410, 9199048, 3066390, 1179428, 235954, 55206157, 27603099, 16567529, 1978087, 1200765, 738611]}, 'Perm': {'d': 22, 'gens': [5393457543661705567, 59018593227322993333, 107580278241953401703, 163749987579054967221]}}, 'schur_multiplier': [2, 2, 2, 2, 2, 2, 2], 'semidirect_product': None, 'simple': False, 'smith_abelian_invariants': [2, 2, 2, 2], 'solvability_type': 17, 'solvable': True, 'subgroup_inclusions_known': False, 'subgroup_index_bound': 36, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'C_3^4.D_6^2:S_3^2', 'transitive_degree': 36, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': False, 'abelian_quotient': '2.1', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 6, 'aut_gen_orders': [2, 3], 'aut_gens': [[1, 4], [1, 3], [2, 4]], 'aut_group': '6.1', 'aut_hash': 1, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 6, 'aut_permdeg': 3, 'aut_perms': [1, 4], 'aut_phi_ratio': 3.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 3, 1, 1], [3, 2, 1, 1]], 'aut_supersolvable': True, 'aut_tex': 'S_3', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 1, 'autcent_group': '1.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 1, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_1', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 6, 'autcentquo_group': '6.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': False, 'autcentquo_order': 6, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'S_3', 'cc_stats': [[1, 1, 1], [2, 3, 1], [3, 2, 1]], 'center_label': '1.1', 'center_order': 1, 'central_product': False, 'central_quotient': '6.1', 'commutator_count': 1, 'commutator_label': '3.1', 'complements_known': True, 'complete': True, 'complex_characters_known': True, 'composition_factors': ['2.1', '3.1'], 'composition_length': 2, 'conjugacy_classes_known': True, 'counter': 1, 'cyclic': False, 'derived_length': 2, 'dihedral': True, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 3, 1, 1], [3, 2, 1, 1]], 'element_repr_type': 'Perm', 'elementary': 1, 'eulerian_function': 3, 'exponent': 6, 'exponents_of_order': [1, 1], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [[2, 1, 1]], 'familial': True, 'frattini_label': '1.1', 'frattini_quotient': '6.1', 'hash': 1, 'hyperelementary': 2, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 6, 'inner_gen_orders': [2, 3], 'inner_gens': [[1, 3], [2, 4]], 'inner_hash': 1, 'inner_nilpotent': False, 'inner_order': 6, 'inner_split': True, 'inner_tex': 'S_3', 'inner_used': [1, 2], 'irrC_degree': 2, 'irrQ_degree': 2, 'irrQ_dim': 2, 'irrR_degree': 2, 'irrep_stats': [[1, 2], [2, 1]], 'label': '6.1', 'linC_count': 1, 'linC_degree': 2, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 2, 'linQ_degree_count': 1, 'linQ_dim': 2, 'linQ_dim_count': 1, 'linR_count': 1, 'linR_degree': 2, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'S3', 'ngens': 2, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 3, 'number_characteristic_subgroups': 3, 'number_conjugacy_classes': 3, 'number_divisions': 3, 'number_normal_subgroups': 3, 'number_subgroup_autclasses': 4, 'number_subgroup_classes': 4, 'number_subgroups': 6, 'old_label': None, 'order': 6, 'order_factorization_type': 11, 'order_stats': [[1, 1], [2, 3], [3, 2]], 'outer_abelian': True, 'outer_cyclic': True, 'outer_equivalence': False, 'outer_exponent': 1, 'outer_gen_orders': [], 'outer_gen_pows': [], 'outer_gens': [], 'outer_group': '1.1', 'outer_hash': 1, 'outer_nilpotent': True, 'outer_order': 1, 'outer_permdeg': 1, 'outer_perms': [], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_1', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 3, 'pgroup': 0, 'primary_abelian_invariants': [2], 'quasisimple': False, 'rank': 2, 'rational': True, 'rational_characters_known': True, 'ratrep_stats': [[1, 2], [2, 1]], 'representations': {'PC': {'code': 25, 'gens': [1, 2], 'pres': [2, -2, -3, 17]}, 'GLZ': {'b': 3, 'd': 2, 'gens': [28, 45]}, 'Lie': [{'d': 2, 'q': 2, 'gens': [6, 11], 'family': 'GL'}, {'d': 2, 'q': 2, 'gens': [6, 11], 'family': 'SL'}, {'d': 2, 'q': 2, 'gens': [6, 11], 'family': 'PSL'}, {'d': 2, 'q': 2, 'gens': [6, 11], 'family': 'PGL'}, {'d': 3, 'q': 2, 'gens': [84, 279], 'family': 'SO'}, {'d': 2, 'q': 2, 'gens': [20, 69], 'family': 'SU'}, {'d': 3, 'q': 2, 'gens': [84, 279], 'family': 'PSO'}, {'d': 2, 'q': 2, 'gens': [20, 69], 'family': 'PSU'}, {'d': 3, 'q': 2, 'gens': [84, 279], 'family': 'GO'}, {'d': 3, 'q': 2, 'gens': [84, 279], 'family': 'Omega'}, {'d': 3, 'q': 2, 'gens': [84, 279], 'family': 'PGO'}, {'d': 2, 'q': 2, 'gens': [20, 138], 'family': 'PGU'}, {'d': 3, 'q': 2, 'gens': [84, 279], 'family': 'POmega'}, {'d': 3, 'q': 2, 'gens': [84, 279], 'family': 'CSO'}, {'d': 2, 'q': 4, 'gens': [20, 194], 'family': 'CSOPlus'}, {'d': 2, 'q': 2, 'gens': [13, 14], 'family': 'CSOMinus'}, {'d': 2, 'q': 2, 'gens': [20, 69], 'family': 'CSU'}, {'d': 3, 'q': 2, 'gens': [84, 279], 'family': 'CO'}, {'d': 2, 'q': 2, 'gens': [13, 14], 'family': 'COMinus'}, {'d': 2, 'q': 2, 'gens': [6, 11], 'family': 'PGammaL'}, {'d': 2, 'q': 2, 'gens': [6, 11], 'family': 'PSigmaL'}, {'d': 2, 'q': 2, 'gens': [20, 138], 'family': 'PGammaU'}, {'d': 1, 'q': 3, 'gens': [1, 3], 'family': 'AGL'}, {'d': 1, 'q': 3, 'gens': [1, 3], 'family': 'AGammaL'}], 'GLFp': {'d': 2, 'p': 2, 'gens': [11, 6]}, 'Perm': {'d': 3, 'gens': [1, 4]}}, 'schur_multiplier': [], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2], 'solvability_type': 6, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'S_3', 'transitive_degree': 3, 'wreath_data': None, 'wreath_product': False}