Query:
/api/gps_groups/?_offset=0
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '8.5', 'all_subgroups_known': False, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 36, 'aut_gen_orders': [12, 12, 12, 12, 18, 36], 'aut_gens': [[56348826589715068207, 56470409094976537680, 109495301021054299562], [671969488780430316840, 77001517697232845536, 272652449890101902053], [56347800207063418103, 56350896638040345736, 338363567591272766650], [484846220222188812007, 671971282500091474103, 786827305393236540861], [818602649703866368223, 818624734737966389527, 772748025127233524650], [193366407034316124007, 857920450806341411063, 628980388521126129381], [75940487817749750903, 467605657438960048687, 261714356211970413370]], 'aut_group': None, 'aut_hash': 2015464893847043307, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 5038848, 'aut_permdeg': 540, 'aut_perms': [1819181001482914255654878351808368931067172576976863974823527899072547804747734909399102553288798602806815048122183447953156543401938974872987063138396880552932317748260036697254657591024380246295452195888716642756795231209032155957763851183835165468666531762623592144130020797908161057741491212091687706959457760687050404466842121041914270458070252675357827623541816205608281602440206937760325616674045028238362752991951807744983692443987722962964497557786893528094010541728713893631264718107783203411207371127621062159972399055634550310702768094117356864892346105390118794350121996526626460353019991240338239468250556455831211115292017670777477286698114410431806913506797649021733077782024751123967568433767851642374298396713295424135192599574543261999531259296307106537488848752348026588783629486026846050683152285137067952705453408669767145780997205835332859205020209008806115975010556588928328327696546955539545171055769624273446998730411386235094449937145401448956280116226199200636329809911948456824488040212306615875838968399376154891172250752472474075554365808052944939286947217815813773409037700959969450816408019553078457818960288971744163589519153653546380616616637346692646032514386006961387972435451430583786264229619513121069390, 4180318958119319779927798945218023018828747554644150471408091546569499878250677964790484855323975038374511973490920479748847279669078797230072600797733159177732244701399466840023978746901198185661933079497467891252141321130867876045589576260676951805066229305390354202472373450355504176262598626674064687929513249201016977661657161365226195230676634183873873510443348323189190933987221386813728272696840162614793447708337066110336218887835765878248369457555035605331519502984459547462637586372827646078319441373028887635822722275119190214735928709943074112798670389120699269267599593733500857429390175599288930715891746545326836467130014160701402296498895165001942262082962121417336371878819141295876193252957081866762248242666997880277988745875240139292802187577211326135612023571165497630270518703657883409617855617480447766346856162243759947670654928913229566370057864675855569321000345356663969605870188783269304072358505622306806558657382808284923192489169726185743496501392602684323026979686243410166270314690354794577847563164816685303394182306446330888880957592061612848852315478546817260515805812392280197823364719319972445095927695153354921245820838050607605298754490181251442891462176075394725569929143880103497499223357306393689381, 460988214277657150148334173374201519656143195584355791670553738773701903897554101111049266456368876513896051741502113891284377080931592527332089282287786324140433907667405494813422672421540405193871392688403949602164817289531334829599561620456273701238611393789541989895170357830470617422933769510350076066108380890286293357891263748413359079521520526508353269282553140148898875611377191562397052066437925561072392335620976953737968136737096489096569887443172679242714491102243731724161594240039449982866372982098640038663191214864364262424261467112187311792787286822434782412460684665008819821654356710295166327259278380321361133646338584186168451975823003770805671917967129840605769143153299853032016856551632898998921514762361096796732178257237760489356480568146775956368135247314772223489335415740450365991412636794418885986280621640152477987887392231379164005641484719772427648591394585018798740093643507835380107960435972294614605509584386009765925830768305125561336749041378804790952426737301329567571618480288531887556480827089930380794164001624930305838598759373531020320893914208616325506797292767566494127780453929870777762385064961725050477641130382231263930156688251235023344182024798129596647244590417632099976321198344529488608, 2768069010278745232498641107067199036415607990521253947184523764343761690559435890015997126953654157151886216432735202309376918869694345936133185067363672848549132826551153451634086706539004086026699101059614615612279604224136957375576842646044597857053850527562474240874974255731948805975287870233102904840786324127609532882353366157316292763872822788006726072314068091515021787179259257639066404913646634780780992935405824511857785109782878247359509803575737945341186927585080998212670163597396238807596097799010159998500774127741272989009166157037442228224725583709623105367673490019344509517031114828051036180200678201070699104254259343586615746780561691637842393726607405377212766921245271188317500438656123304017882268000692715948323602202107001189979030331961499977604250813739565117674403734964907614182485238920112116292637223903563038387959756575094225949653788986965120249276617140889779784836188156426846471413825277865762135441323186285823612358351140987574128710493771562204316507705288173668544071397730471659283120481306779770954542568375582593034676749761629210545575627888850164680853534204215337591681156944634895316442334918130130926634998916344158660233996471875898136480096746161789315435985849620753490594472782626482251, 2257504374469611550353810466345634197854861243888140762049285682383294203570842722697111691077407919663070788684755645771095135932054050312146611738593148775263950563150757003633651205259142435685468110252364969821859695708053533762023816600240051985189687211115118484821678537446191530602425846679960200155165396079038744336588292361042449873689195397922069834140763986392407472916620294080601431909012892842988674222694746325289405143766356037407758342163602810963569544486330697774671624227672911044265450066209067943543623706578659204526180127456145230933979973536589433054394734235897773570857469928820650118477619938551963021055319720063749797365934042491003855450678115558176880649734386274080887165919692713091744683430389245165288570676582119757928691304593970817448802982133410943187532617892186834376976032626440055033508398641411024323012141213535827084554875449891370021878960808525125132215552948813124477330364322951608589481412711555007697229083376439686985955197419874006461381274655184306364348948311324752352927604110846559302037532694339390629800484657500087444707439036467450943961110013555136186330011879722096231352282245358547904412079679337576843971885236075997185084798426045565590807336324139458182885022249434312393, 2788417210668192175934620614303485255588394302058201061478790010625967441130874846451770660995571741617247626671093921056276900334059966301830078935563929309111807197114083165378438914589927181450774905790041894937055418685549182304612426795149600160292799633027240697209496573840253584700358141200989906694056898484059148830128367275213370804205010209373921158718429006869534410507878456978560157003581608313803148355409127115797987198327670292133890589692547798889350374988361701402976440036814319440796874641382385181581637907051591575747498428843898841131950968715527104073070628707070456772009706037323447352807182081049867780023878849812857356466851546426029956943875575770324259583832395123831572416041075356004374436247823947583272926292741488121106064336940446749702737932113810710214706722957899439437492562765495828346325220534091778431263747894284910290940050354354244021733812082537841125269300077909653198032903017357398158122336578898603237372295870512014341918594867366026602900378480191033869998983641402727584650420687404351942416289220700121016483647842257279485383836302196441200510501542842374544189017482640010877316458967519356487499119320113398257647757142309951944200163039640713107806559507525435296407500701972688271], 'aut_phi_ratio': 216.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 1], [2, 54, 4, 1], [2, 324, 1, 1], [2, 729, 2, 1], [2, 1458, 1, 1], [3, 4, 1, 2], [3, 12, 1, 1], [3, 12, 3, 2], [3, 12, 9, 1], [3, 24, 1, 1], [3, 24, 3, 1], [3, 24, 9, 2], [3, 162, 1, 1], [4, 324, 1, 1], [4, 8748, 2, 1], [6, 4, 1, 2], [6, 4, 2, 1], [6, 8, 1, 1], [6, 12, 1, 1], [6, 12, 2, 1], [6, 12, 3, 2], [6, 12, 6, 1], [6, 12, 9, 1], [6, 24, 1, 1], [6, 24, 2, 1], [6, 24, 3, 2], [6, 24, 6, 1], [6, 24, 9, 3], [6, 24, 18, 2], [6, 108, 4, 1], [6, 162, 1, 1], [6, 162, 2, 1], [6, 324, 4, 1], [6, 324, 12, 1], [6, 486, 8, 1], [6, 648, 1, 1], [6, 648, 3, 1], [6, 648, 9, 1], [6, 1458, 2, 2], [9, 324, 2, 1], [9, 648, 1, 1], [12, 648, 1, 1], [12, 648, 3, 1], [12, 648, 9, 1], [18, 324, 2, 1], [18, 324, 4, 1], [18, 648, 1, 1], [18, 648, 2, 1], [18, 972, 8, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_3^6.C_6^3.C_2^5', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '8.5', 'autcent_hash': 5, 'autcent_nilpotent': True, 'autcent_order': 8, 'autcent_solvable': True, 'autcent_split': False, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^3', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 36, 'autcentquo_group': None, 'autcentquo_hash': 1960495289627526838, 'autcentquo_nilpotent': False, 'autcentquo_order': 629856, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'C_3^6.C_3.C_6^2.C_2^3', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 2, 1], [2, 54, 4], [2, 324, 1], [2, 729, 2], [2, 1458, 1], [3, 4, 2], [3, 12, 16], [3, 24, 22], [3, 162, 1], [4, 324, 1], [4, 8748, 2], [6, 4, 4], [6, 8, 1], [6, 12, 24], [6, 24, 78], [6, 108, 4], [6, 162, 3], [6, 324, 16], [6, 486, 8], [6, 648, 13], [6, 1458, 4], [9, 324, 2], [9, 648, 1], [12, 648, 13], [18, 324, 6], [18, 648, 3], [18, 972, 8]], 'center_label': '2.1', 'center_order': 2, 'central_product': False, 'central_quotient': '34992.fm', 'commutator_count': 1, 'commutator_label': None, 'complements_known': False, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '3.1', '3.1', '3.1', '3.1', '3.1', '3.1', '3.1'], 'composition_length': 12, 'conjugacy_classes_known': True, 'counter': 135, 'cyclic': False, 'derived_length': 3, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 1], [2, 54, 1, 4], [2, 324, 1, 1], [2, 729, 1, 2], [2, 1458, 1, 1], [3, 4, 1, 2], [3, 12, 1, 16], [3, 24, 1, 22], [3, 162, 1, 1], [4, 324, 1, 1], [4, 8748, 1, 2], [6, 4, 1, 4], [6, 8, 1, 1], [6, 12, 1, 24], [6, 24, 1, 78], [6, 108, 1, 4], [6, 162, 1, 1], [6, 162, 2, 1], [6, 324, 1, 16], [6, 486, 2, 4], [6, 648, 1, 13], [6, 1458, 1, 2], [6, 1458, 2, 1], [9, 324, 2, 1], [9, 648, 1, 1], [12, 648, 1, 13], [18, 324, 2, 3], [18, 648, 1, 1], [18, 648, 2, 1], [18, 972, 2, 4]], 'element_repr_type': 'Perm', 'elementary': 1, 'eulerian_function': None, 'exponent': 36, 'exponents_of_order': [7, 5], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [[12, 1, 12], [24, 1, 51]], 'familial': False, 'frattini_label': '162.55', 'frattini_quotient': '432.755', 'hash': 6506385555687228630, 'hyperelementary': 1, 'id': 498985, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 36, 'inner_gen_orders': [18, 18, 4], 'inner_gens': [[56348826589715068207, 672124946530191130800, 626521739710383095901], [467636638859946224767, 56470409094976537680, 525914934293212103642], [601485438048787288936, 153581046180931369440, 109495301021054299562]], 'inner_hash': 6895329934315343326, 'inner_nilpotent': False, 'inner_order': 34992, 'inner_split': True, 'inner_tex': 'C_3^6.C_6:D_4', 'inner_used': [1, 2, 3], 'irrC_degree': 12, 'irrQ_degree': 12, 'irrQ_dim': 12, 'irrR_degree': 12, 'irrep_stats': [[1, 8], [2, 22], [4, 28], [8, 5], [12, 80], [24, 100]], 'label': '69984.fe', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': None, 'name': 'C3^4.D6^2:S3', 'ngens': 3, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 61, 'number_characteristic_subgroups': 31, 'number_conjugacy_classes': 243, 'number_divisions': 228, 'number_normal_subgroups': 53, 'number_subgroup_autclasses': None, 'number_subgroup_classes': None, 'number_subgroups': None, 'old_label': None, 'order': 69984, 'order_factorization_type': 33, 'order_stats': [[1, 1], [2, 3459], [3, 890], [4, 17820], [6, 26430], [9, 1296], [12, 8424], [18, 11664]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 12, 'outer_gen_orders': [2, 6, 12], 'outer_gen_pows': [0, 0, 0], 'outer_gens': [[818797452882877980127, 818797669292963001720, 725032691499755093162], [498015588400808734927, 496920766098529795823, 129023294142635400242], [602216019994802790360, 193304862932321147056, 124840368088737518890]], 'outer_group': '144.162', 'outer_hash': 162, 'outer_nilpotent': False, 'outer_order': 144, 'outer_permdeg': 10, 'outer_perms': [1992360, 458647, 453733], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_{12}:D_6', 'pc_rank': None, 'perfect': False, 'permutation_degree': 22, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2], 'quasisimple': False, 'rank': 3, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 8], [2, 10], [4, 18], [8, 11], [12, 80], [16, 1], [24, 100]], 'representations': {'PC': {'code': '9372022037964788007992841084580977707540283743512582399914230666635285847955852396762758984721732870679238824940079432179634343666380802390256771895386664948845561979477731183279428490982750468205813473984381745494403756719', 'gens': [1, 2, 4, 6, 8, 10, 11, 12], 'pres': [12, 2, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 176328, 1435057, 61, 2371106, 1743843, 1538223, 705771, 135, 164164, 1607776, 925228, 523589, 852785, 937469, 254489, 209, 314502, 1971666, 545358, 430458, 481543, 2891539, 595615, 275371, 283, 749096, 2303012, 1268168, 615644, 852489, 2911701, 994353, 398925, 4561930, 3025462, 575026, 760366, 8377355, 385367, 1872323, 551279]}, 'Perm': {'d': 22, 'gens': [56348826589715068207, 56470409094976537680, 109495301021054299562]}}, 'schur_multiplier': [2, 2, 2, 6], 'semidirect_product': None, 'simple': False, 'smith_abelian_invariants': [2, 2, 2], 'solvability_type': 17, 'solvable': True, 'subgroup_inclusions_known': False, 'subgroup_index_bound': 54, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'C_3^4.D_6^2:S_3', 'transitive_degree': 36, 'wreath_data': None, 'wreath_product': False}