-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'ambient': '3484800.e', 'ambient_counter': 5, 'ambient_order': 3484800, 'ambient_tex': '\\PSL(2,11)^2.D_4', 'central': False, 'central_factor': False, 'centralizer_order': None, 'characteristic': False, 'core_order': 1, 'counter': 177, 'cyclic': False, 'direct': None, 'hall': 0, 'label': '3484800.e.1320._.G', 'maximal': False, 'maximal_normal': False, 'metabelian': False, 'metacyclic': False, 'minimal': False, 'minimal_normal': False, 'nilpotent': False, 'normal': False, 'old_label': '1320.G', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': None, 'quotient_Agroup': None, 'quotient_abelian': None, 'quotient_cyclic': None, 'quotient_hash': None, 'quotient_metabelian': None, 'quotient_nilpotent': None, 'quotient_order': 1320, 'quotient_simple': None, 'quotient_solvable': None, 'quotient_supersolvable': None, 'quotient_tex': None, 'simple': False, 'solvable': False, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '2640.bt', 'subgroup_hash': None, 'subgroup_order': 2640, 'subgroup_tex': 'C_2^2\\times \\PSL(2,11)', 'supersolvable': False, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '3484800.e', 'aut_centralizer_order': None, 'aut_label': None, 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': None, 'complements': None, 'conjugacy_class_count': 1, 'contained_in': None, 'contains': None, 'core': None, 'coset_action_label': None, 'count': 110, 'diagramx': None, 'generators': [248840993280564585934796282, 259697824342176288101781, 264341474334123842533132920, 2], 'label': '3484800.e.1320._.G', 'mobius_quo': None, 'mobius_sub': None, 'normal_closure': None, 'normal_contained_in': None, 'normal_contains': None, 'normalizer': None, 'old_label': '1320.G', 'projective_image': None, 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '1320._.G', 'subgroup_fusion': None, 'weyl_group': None}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '4.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 660, 'aut_gen_orders': [10, 2], 'aut_gens': [[100243232767, 194643121816], [47102565007, 581682287543], [555900402976, 887361805447]], 'aut_group': '7920.q', 'aut_hash': 1157788818429169362, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 7920, 'aut_permdeg': 58, 'aut_perms': [81767740129895361781314865737532634877916766745654378449289700586534228932508, 40533160917917653740324168618847765472321981204546482113282876094633686212699], 'aut_phi_ratio': 12.375, 'aut_solvable': False, 'aut_stats': [[1, 1, 1, 1], [2, 1, 3, 1], [2, 55, 1, 1], [2, 55, 3, 1], [3, 110, 1, 1], [5, 132, 1, 2], [6, 110, 1, 1], [6, 110, 3, 2], [10, 132, 3, 2], [11, 60, 2, 1], [22, 60, 6, 1]], 'aut_supersolvable': False, 'aut_tex': 'S_3\\times \\PGL(2,11)', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 6, 'autcent_group': '6.1', 'autcent_hash': 1, 'autcent_nilpotent': False, 'autcent_order': 6, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'S_3', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 660, 'autcentquo_group': '1320.133', 'autcentquo_hash': 133, 'autcentquo_nilpotent': False, 'autcentquo_order': 1320, 'autcentquo_solvable': False, 'autcentquo_supersolvable': False, 'autcentquo_tex': '\\PGL(2,11)', 'cc_stats': [[1, 1, 1], [2, 1, 3], [2, 55, 4], [3, 110, 1], [5, 132, 2], [6, 110, 7], [10, 132, 6], [11, 60, 2], [22, 60, 6]], 'center_label': '4.2', 'center_order': 4, 'central_product': True, 'central_quotient': '660.13', 'commutator_count': 1, 'commutator_label': '660.13', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '660.13'], 'composition_length': 3, 'conjugacy_classes_known': True, 'counter': 46, 'cyclic': False, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [['2.1', 2], ['660.13', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 3], [2, 55, 1, 4], [3, 110, 1, 1], [5, 132, 2, 1], [6, 110, 1, 7], [10, 132, 2, 3], [11, 60, 2, 1], [22, 60, 2, 3]], 'element_repr_type': 'Perm', 'elementary': 1, 'eulerian_function': None, 'exponent': 330, 'exponents_of_order': [4, 1, 1, 1], 'factors_of_aut_order': [2, 3, 5, 11], 'factors_of_order': [2, 3, 5, 11], 'faithful_reps': [], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '2640.bt', 'hash': 6613815745579852445, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 330, 'inner_gen_orders': [5, 5], 'inner_gens': [[100243232767, 277080744256], [711616077367, 194643121816]], 'inner_hash': 13, 'inner_nilpotent': False, 'inner_order': 660, 'inner_split': True, 'inner_tex': '\\PSL(2,11)', 'inner_used': [1, 2], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 4], [5, 8], [10, 8], [11, 4], [12, 8]], 'label': '2640.bt', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': False, 'name': 'C2^2*PSL(2,11)', 'ngens': 2, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 14, 'number_characteristic_subgroups': 4, 'number_conjugacy_classes': 32, 'number_divisions': 24, 'number_normal_subgroups': 10, 'number_subgroup_autclasses': 58, 'number_subgroup_classes': 142, 'number_subgroups': 7456, 'old_label': None, 'order': 2640, 'order_factorization_type': 311, 'order_stats': [[1, 1], [2, 223], [3, 110], [5, 264], [6, 770], [10, 792], [11, 120], [22, 360]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 6, 'outer_gen_orders': [2, 6], 'outer_gen_pows': [0, 268720262056], 'outer_gens': [[100243232776, 194643121807], [226351249343, 554725318327]], 'outer_group': '12.4', 'outer_hash': 4, 'outer_nilpotent': False, 'outer_order': 12, 'outer_permdeg': 5, 'outer_perms': [6, 31], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'D_6', 'pc_rank': None, 'perfect': False, 'permutation_degree': 15, 'pgroup': 0, 'primary_abelian_invariants': [2, 2], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [10, 12], [11, 4], [24, 4]], 'representations': {'Perm': {'d': 15, 'gens': [100243232767, 194643121816]}}, 'schur_multiplier': [2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2], 'solvability_type': 13, 'solvable': False, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'C_2^2\\times \\PSL(2,11)', 'transitive_degree': 44, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '4.2', 'all_subgroups_known': False, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 1, 'aut_exponent': 660, 'aut_gen_orders': [6, 10, 110, 10, 22], 'aut_gens': [[32993117835616624321406176, 16834429088759480192478850], [128135284203913638455947687, 211359881830263776660176690], [158931849732243132400013527, 298187863549519938833030410], [209849474502489727463050927, 313139061035838545920404493], [32670532194836066210460247, 210705724873379511717188413], [312706366059174009722560216, 307234770219772030023102013]], 'aut_group': None, 'aut_hash': 2269088628342978270, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 6969600, 'aut_permdeg': 1322, 'aut_perms': [97547580700470319645459428432381087356315309065846707187576638608241530149666689013488917866593294886493441800352217750417541860581608331307206048291241251076888502660607386711100565019389336897724128624656969451692585771262239495710750580494995033444730706046495868092243551329698728952440716623361444270781753910914686240597973277979422477387783086360659963169062882946278904668118850905567197629694055226551868000476752310672214817900274117141165116655439610272482440454023199023502028020298204133578953619113328848437673469570411172815933357004946146144066068241559578577242701036677532235642920947028757210976271732825729767800734114618006375476065152422217387157234978354085799651738696777231459827665140507769238248292422003878192670071436921292663052090419126874107716662170490721165831316496805315430799941481148546537908644779136499296237170991660299549052425950755379339958828461790996726171782056288421713782569280379493466121587983622687828430124863838147724375408679089164909612207256484206966202267571914044901531791362377389141641601309010262617941246062601822374240076540301011741984103451736208070489952536816092171590559909488305995137833177460031572399106702178957136636133948139542505996242795437685744136244643588907661649298720225160559878565422146481201092320865526034602360923920818425652221540224238336799427954477182689218163332103719811265988309005698149319894121678164300171543079434247314763568095325736897697738611551823886505085037131739404486020928388564841759542715943975061608452335993540431285046341711099357360549750249484058271388183482981586005921890912751380783598305850610522182737250192911656050787270103505839265979661272326666200185603527302403416355408776466819090022681175373645536288032828277576500546968193399797077468350225621210878067804787056413468460301708075112525169059827564278768987314372628042789811682279392595689386907881498285263551886540679487629144620717195577491859007862901275381947720084286276473265160679753953990392968541020560965858861027238970931522048030764764886457026329834231459678359123008486510211039406535478724178695252960681759945793328804040909835658404956843037292885296544050362316589498726037797206127095102566644164293636283837623357629981966831933122117845634291590527843413732067830828983659262521794928691267215453971802971585753730848114352274833899621947863652544887701719120679671548956512770159884909260643615398794467002197876230324133305469552459560200302074101938372049800040156520600955999097119209018076603145827075133821800057132749183700175192457612873360564433773402298400321538845348794740144526945400928788485766830871410062108053285212068677721809870619664757928615221673362558920234240798252528182354842408797226545872669420058479902523334074453210504003525611373697158931273871169054704608019594013047568180763141202634737922932669874363553028868095664653115138348514211737010806922685433347573706852021663938133215241304435030849204697578453771676980123479133829734515155588338399032722610202354403659537308250585519362193797120985773002025783755416093044516909746234023768308652980455138097701170280379364852043395928322808069734697861259413745483283060784156419638066257497650627620663602460760509206152119186218503296048987786589739763084386506622441115677843992645606862364328502137971139117260840996420596050562419461297085885937526146251924648393305008503413473286879992468554129167968040170231120495143941704074152341096986148306103790657623149045260930334441647026095359028824609547753368526484047023562800725062486904043795957707851681020372, 99349753805726095873000780141607732630985058284113013260135732458173280948368309072392117702505398870828401557469962899961669437403780265548124053584148693991809923554197105152641784330530713706056164435699668735060578482185705738964049163173835528028741494849151709061052450685876171727313880664068187816764306286497168264980972980322792410432830163669415610761683932565472361918794539729352491484151387620652086177123060721704838365183536962927338221179743091755713751852133830123960616124796613111175790490229945860884868191095923984957355283271821562918926205858381613236104745768765645105758849003075868031371788888969312807284515293522256554948052799905277671942966295798930058871603816930848767201853972611341050626903630608799607012150024919548898468376883061955446857734962890269361409109308584661686609822255280849878852924912407961758445494573090340125728130420113036856471024901350987003738648974777888050376883894211501804047542051510428534245222167420712734351288222430203794084899489676154965144511037144681716993636849816761866776534032949077932313686984889721166751033866433283998755475064529796002133612975179644741166768705112976771221072587989043250641544278520917160101133751675013526999331654650823301219892172319610302833291881443241421674104485529876204685549707934985992770053885422186997379961004619259474667395001572619963515993566516773435331625027080829635043859423212571703982887807287724899562669670895393607709909913705254861628955832286585509279471661626424069548598041804314617583791888914051997470802679811472572423103683067716656704605836771857961175474833665959850745862008938903921804285454321583770105667422352480552034960263285486906488740333118380717254095377882283656540550338496395907535022628950523239315685079191257013769399674843670617411358555545248008821936841571160869911006474735747586144303168201565507534967496235726925272922461444460073712816663769613674296958906903341037147886558986211303405853831539969558637126511643766199136162743525112438522013380615629318362936793579076742603341599918194956646888566142302190642763111771851567755497475546445725105522157153994751147366368712201110475758550428183476185996980549411234450176058178422300990902842815750321868060947227412630054590046846013670406118932580691097989071071111716479105485227019953321470991166921559069789667656844395544982634277863491206433262888580345282859588174927326965620102505653489113080151704924563505528068881887072292955456763960161469505910314367431307755954610157877637687465804532536184018077501376932232761814947310587237742051689388767157314911661771243607855674047800179616718290886977486144639871753469228531820485796495115668596270353142153212514238860048641758249065918921087755374742392783922798713421834158657528998179259942485942390777532986148529386479277847275337051979666979043842538582309653766481971691381635652710825251787401535009704635073695457539343854569907192524654165548342729672366140951855925869135973250394540472761255457841915395430221312698120154557218195506095831458232461340821213690384590521252180945312727906957940016398930570002200844496268135396825911898148027565148216326258440334530063049598544143832187724271027502441244372161388134338467999513660930964670452444590797773362708764683667073512896649432394255408588123440123771907136825549965888213406841090392276693733105405528832168696717536914406277041088374047555926344957376707722533099992487873644150078423140651419028197472678351832086754422291416244190034779844027607810281760439544763012335090489512734376387444063019631611574276, 122235510427285175956971199687674903010096495091149700219806127598018416379684969589701427885629679781950832018747036516151336723228673673522846656739715852767882962794315303078181764131986290647230423452824315866184194178053790400591707033968785834175933428989813537296133143180741859203929219272154367037124809966481868278628219898190896708828672274147447411905339857555761415134208943485890412917302359702164719747300805195974340759692824095444559452267734198034658612249202105482688374198572109570661233861406313216657519938876507120138612887716144560648681092370769777022598480526594169342226923635968299377957594555808744733336320581717127323515302378817422746044004331822680662997816784445886145820808974006994220354627793289481384491046875175297035547266729143852992897959260798369588672741798451887162876369425992801282453603896047658083395925919344427195123798160364998787927184848438026766823905484566493397760501012977366185650836863896647169209817880773024600248607200185926883452221741259427338586338606675587397893871777119084830522818301329638441073341224339483221683719618435586681493444490749429679100057300807838976281588459330010376648747521627461956938008191174902874924191850065209237219187086098279101710863067794349592157344819462225918379933731757613373929939094051768976431508359170135010766647442686508129782906187911674849309213064257386843808397592448562233751863545224838936805357095529964040302021540813131376585164474756475534962291538037420326041577422844937288365741941742700917776226239338813752258332776739886668143071861640281441583902831167448277627164327237572729317595330451094358082710431132204959359153535666569785869491028277773871253522609500600260755991168768232336023881638179642201811648960683532602381421017096128386036211752507737003882138776262282764491365668071960079694432478148121338750428410739483266833842099432346645704487215843931626890009629844987816091203219364803160154957507767111438131329456372344471057891705657263542981611456358389769342366837051592515013319854495473500707248163883716208615901043234372648874326439620036806460901141563342394174639853782172357095793557290659674503840862956704225884833687113912622450755282049841713673984884965509142845089236419968811140266221776582959365041749977971279054661949052638919844431601723668939211516609611689956885868282111409248025024603481310964715138683577172015687767527142838346213665928815327170388829001312712880663629716577022352411896336170587811591824502212011086943081591473993806075394317190494523168318334071163534286399352563255425351254066558182830884641434569296524263493820242366017138475513407689189100782873857839683293447995577194072511478702019745802454646369743704729453731455149181152068528371524140283354756556977882465181630201628079188920801628335588371900245189994950308689873082291644160066393092535002451855580267683736913485021321300416368297524081379786953791079289822335905442495891723780146237994821310611597407470408110751625209676276585894264649472903741983454040286056701788957417032081319492568592596455297507311633335961128803436539485181929656621965159564920333951914909053325255639946278394843459143659845049193090192769199202762610291814961680101392156134924506982961313341394109169887470978321705255018978173162138866266510086531533130212837162562015882554178042726285528821275608016619720706898342748750486801529462212411878841590136186600949610823260166712446907289510272881292669270338729124351664204430703952009182858288493968667057120266168135592214665254493626113114960077552486192240787638091178, 117179090170700134332147378357668773030290209412564037539505245746045978261905861435113080180246022112070848105653238258002586809034938829980138087950106244477692347678001348182014688975651136569232654801850555909262961457917910789739044799644229922779360474965208686099325186782692986762821929246709987922479581930291082963574421743713883612994208876352885700991441258518695167254742081364777339530025049767903767913904019191663386001864104765906044585556882337275987743340019887035527633011339000526457809471173606870334248485957549369675359455772635988034635565204849990973572086328023672055252549460335549837365915133810319258120476680851231383354578974312848478914374388411421227920581495244299164784913304500827290400064294460188849231986532526603515079139150619140181206086766483912016824665199183199214557061369598394800965553641343146088721141991463375465313165909025339840985243332659154168598930786751893159378760798555850126025416112351809715273096535159172802715600437707164619597646218466913743769189646712495169920828261291948983993431356006518217791209279128898530972586823926744220961086297635672268700927082500249811393649157792795531856644519181018454214897328945763273763949774997502129975839561121633459800023504668085955491756097598220642814722633307795823952998600590985631144771193861820952587073856033818424121344753726664176941980683362047302484209369130164544190343419612914592008298176062428613768045709426697573756346960840802128492403743245765048036089825754587021183451821671731009293686470016708525649486012809209573777158693869104348767127720035646514140242058673946170433048218692086528533577658490480895252812150934280859972157211859481084590206429432960929699834882459274939525016072869320494983564801330365088740303663841740663005909513417628501899778431944906726313441031891285737216098880766332734804518615198004602941467368782967710800819528764096124308799773176460413432405583857663936981406180529814108109132428687703988934056253590959835879783885950756228057092690054047450366825995721529105122770653578947130011028537392234456575549752545946967820097803998207238608971389422236373287956837299738030440089582162532800626377107597021926734731444267887330772021690151195084559223173728189476334153182774341387599393623414066653256686796132200594996232699400275429895929450319909045538591550041180444723388122827635888010550479024595015756435605604907149717317031945830440771140231906415909849540471569416424980600290725375631727110332285349621879342403233838264573109771193848696159255854556547671818926083640064660244103783149385985673577033417814316781636032825606885680655535233645812420801470331595593034408081747732748981703629130300840712879617434055806240755731362916500712584333689616152194266180113957333548928088330478642905058427630779979644409497901800266580047155780813718558030988739677533287718202969713681837756235946251956869088103556614212101197985151110466422791708142184566059759464502798247753604908980724062650295784659192910675011741412188327716785892124370075179049917838135595211111531329385336321541244339647077084954159479526063065872861764130645957873973487551883222810003937383315015777227033692370242686076714756383047315925335341214875090236234845287465149776109750128410892984854784636031766033551694014597939267547537502032554862689016553811734119335339519607175630116672576477516242456469114195856453239353129416126747624026121258328334933462888554319275401409828147872387830544378975485113293153790647843679241917722387982861897895333801142678079202692425275333719777121685624305, 55817737182836087846859871257052106011626060719725810361124464129643470021077527460545812007340659348204320195349316554280373650084407807333025255269873945636226410276360598736556325231946311154858724473613607902987060617695169735716754689696633436156185632337386982569248497868310212610002524165998213676050857498529063913323532295116122670013738572744662313113030379330273796137490043210283510192551642279162461430022634084982781599634181084937923487068197148905733574873486639102689656588330823681122867817869389309815337112762367520270892310501118111019820081356655038165038007665442429281960502062895968592564182357581912307943019800315557158095800240476045961048557976061723543105843770414040693792665192549401478681215138242984821810621912211649681596292030154568282331334145168480055428870739756763323858408257566446155043999061327272346494878879673817549611491613487803588761539845978967293259369952076749643644369414617789780445968843960609747903492064208438598540431773475007520186111159145334542284640566965081514379825990403884633681248098195580065278487237319069922805536009059634767066589810416218352383316793123853924301972279540778374348435721358532290425297813389102764794255060007489045379186704640373615125268875288081438456797043378767025359756607250304430118561326477672370935503077722154584174452441257616273831766290429752867989616866636187007071959728339605138403188860395135009517007365845470358714474759091824100727045171006373870779269090908830569574323293100923673810918579210115674344780666109881671474605108703054332729698563813424411346287823665241570943222974009338557408909817414656047950997235335889991261413733752718815701346570097384004563535513714249613192436430907885969462731594982762680518082120857761828530312063917695446342929708041116283043417040797982144529533162898553176397208246911146025282664121072185495323855828240103896028072507334962613021873103778001668027333316995643015166460994817773279516184684756974594140353939455109525096833137205057911556025332835199058027781246660931681897174397352995040989964237044267476059018793998855547067292275890110935947366545637352478059565260784173843211981693428063501390460638863400744732126820410262681439189321866599032607439576001148891171925081982842850870327304587781564735179883333466400164435203348491322666839168996570808944316026772850165991986714019652145788626566898276779752105224403619592181829926104356024228027445474682673633845045984466427065297427805690807974908916942825931001311608959495052199931648637760860185940689266250966066352391102080526458875224452201923587786689151325806541106439122792505801061408651166128856020752299398561098734949748985806620975094605726631976792069493032393038978181219537652434357412426708134944655328201183349485573758195878023103172635156721696570891596928118363646327750352116333553601695896764771232648633129298845776232905659122281287112747358668259483316690525796544827211845775713992962702633507779680039683582436486582225501174883397252869847358769820082675659218897472531332983294623089395174785193082153887953067674866555903479108412735487414005295884388900465510049634407602949149988960950055408880956384148466624666704027297051392649761454541276936003621140557013420778323878090429082867759715747062737568040420926175849777141973726330442986037436727227574301371244058385647057606060475455436986592185775204946736101713145400273443152335722964939595269205083233642850987623191016472790403264528314996210074239225140356205358440310173119933366698908836581100417563678896970549885499995491360373229789], 'aut_phi_ratio': 8.25, 'aut_solvable': False, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 1], [2, 110, 1, 2], [2, 110, 2, 1], [2, 1320, 1, 1], [2, 3025, 1, 2], [2, 6050, 1, 1], [3, 220, 1, 1], [3, 12100, 1, 1], [4, 1320, 1, 1], [4, 72600, 1, 2], [5, 264, 1, 2], [5, 17424, 1, 2], [5, 34848, 1, 1], [6, 220, 1, 3], [6, 220, 2, 2], [6, 12100, 1, 7], [6, 12100, 2, 2], [6, 24200, 1, 4], [6, 24200, 2, 1], [6, 145200, 1, 1], [10, 264, 1, 2], [10, 264, 2, 2], [10, 14520, 1, 4], [10, 14520, 2, 2], [10, 17424, 1, 2], [10, 34848, 1, 3], [10, 34848, 2, 1], [10, 174240, 1, 2], [11, 120, 2, 1], [11, 3600, 2, 1], [11, 7200, 1, 1], [12, 145200, 1, 3], [15, 29040, 1, 2], [20, 174240, 1, 2], [22, 120, 2, 1], [22, 120, 4, 1], [22, 3600, 2, 1], [22, 6600, 2, 2], [22, 6600, 4, 1], [22, 7200, 1, 1], [22, 7200, 2, 2], [22, 79200, 2, 1], [30, 29040, 1, 6], [30, 29040, 2, 4], [33, 13200, 2, 1], [44, 79200, 2, 1], [55, 15840, 2, 2], [66, 13200, 2, 3], [66, 13200, 4, 2], [110, 15840, 2, 2], [110, 15840, 4, 2]], 'aut_supersolvable': False, 'aut_tex': 'C_2^2\\times \\PSL(2,11)^2.C_2^2', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '4.2', 'autcent_hash': 2, 'autcent_nilpotent': True, 'autcent_order': 4, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^2', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 660, 'autcentquo_group': '1742400.c', 'autcentquo_hash': 8907486698060875046, 'autcentquo_nilpotent': False, 'autcentquo_order': 1742400, 'autcentquo_solvable': False, 'autcentquo_supersolvable': False, 'autcentquo_tex': '\\POPlus(4,11)', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 2, 1], [2, 110, 4], [2, 1320, 1], [2, 3025, 2], [2, 6050, 1], [3, 220, 1], [3, 12100, 1], [4, 1320, 1], [4, 72600, 2], [5, 264, 2], [5, 17424, 2], [5, 34848, 1], [6, 220, 7], [6, 12100, 11], [6, 24200, 6], [6, 145200, 1], [10, 264, 6], [10, 14520, 8], [10, 17424, 2], [10, 34848, 5], [10, 174240, 2], [11, 120, 2], [11, 3600, 2], [11, 7200, 1], [12, 145200, 3], [15, 29040, 2], [20, 174240, 2], [22, 120, 6], [22, 3600, 2], [22, 6600, 8], [22, 7200, 5], [22, 79200, 2], [30, 29040, 14], [33, 13200, 2], [44, 79200, 2], [55, 15840, 4], [66, 13200, 14], [110, 15840, 12]], 'center_label': '2.1', 'center_order': 2, 'central_product': None, 'central_quotient': '1742400.g', 'commutator_count': 1, 'commutator_label': None, 'complements_known': False, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '660.13', '660.13'], 'composition_length': 5, 'conjugacy_classes_known': True, 'counter': 5, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': None, 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 1], [2, 110, 1, 4], [2, 1320, 1, 1], [2, 3025, 1, 2], [2, 6050, 1, 1], [3, 220, 1, 1], [3, 12100, 1, 1], [4, 1320, 1, 1], [4, 72600, 1, 2], [5, 264, 2, 1], [5, 17424, 2, 1], [5, 34848, 1, 1], [6, 220, 1, 7], [6, 12100, 1, 11], [6, 24200, 1, 6], [6, 145200, 1, 1], [10, 264, 2, 3], [10, 14520, 2, 4], [10, 17424, 2, 1], [10, 34848, 1, 1], [10, 34848, 2, 2], [10, 174240, 2, 1], [11, 120, 2, 1], [11, 3600, 2, 1], [11, 7200, 1, 1], [12, 145200, 1, 3], [15, 29040, 2, 1], [20, 174240, 2, 1], [22, 120, 2, 3], [22, 3600, 2, 1], [22, 6600, 2, 4], [22, 7200, 1, 1], [22, 7200, 2, 2], [22, 79200, 2, 1], [30, 29040, 2, 7], [33, 13200, 2, 1], [44, 79200, 2, 1], [55, 15840, 4, 1], [66, 13200, 2, 7], [110, 15840, 4, 3]], 'element_repr_type': 'Perm', 'elementary': 1, 'eulerian_function': None, 'exponent': 660, 'exponents_of_order': [7, 2, 2, 2], 'factors_of_aut_order': [2, 3, 5, 11], 'factors_of_order': [2, 3, 5, 11], 'faithful_reps': [[10, 0, 4], [20, 1, 4], [22, 1, 2], [24, 1, 4], [50, 0, 4], [100, 0, 8], [110, 0, 4], [120, 0, 8], [200, 1, 4], [220, 1, 4], [240, 1, 8], [242, 1, 1], [264, 1, 4], [288, 1, 4]], 'familial': False, 'frattini_label': '2.1', 'frattini_quotient': '1742400.g', 'hash': 4097294603936226366, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 660, 'inner_gen_orders': [10, 22], 'inner_gens': [[32993117835616624321406176, 320876680315773537040227853], [205171062557194180359089287, 16834429088759480192478850]], 'inner_hash': 3836868429214239020, 'inner_nilpotent': False, 'inner_order': 1742400, 'inner_split': True, 'inner_tex': 'C_2\\times \\PSL(2,11)\\wr C_2', 'inner_used': [1, 2], 'irrC_degree': 10, 'irrQ_degree': 20, 'irrQ_dim': 20, 'irrR_degree': 20, 'irrep_stats': [[1, 4], [2, 1], [10, 8], [20, 8], [22, 4], [24, 8], [25, 8], [50, 6], [100, 24], [110, 8], [120, 16], [121, 4], [144, 8], [200, 6], [220, 8], [240, 16], [242, 1], [264, 8], [288, 6]], 'label': '3484800.e', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': False, 'name': 'PSL(2,11)^2.D4', 'ngens': 2, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 3, 1], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 101, 'number_characteristic_subgroups': 9, 'number_conjugacy_classes': 152, 'number_divisions': 96, 'number_normal_subgroups': 9, 'number_subgroup_autclasses': None, 'number_subgroup_classes': None, 'number_subgroups': None, 'old_label': None, 'order': 3484800, 'order_factorization_type': 321, 'order_stats': [[1, 1], [2, 13863], [3, 12320], [4, 146520], [5, 70224], [6, 425040], [10, 675312], [11, 14640], [12, 435600], [15, 58080], [20, 348480], [22, 255120], [30, 406560], [33, 26400], [44, 158400], [55, 63360], [66, 184800], [110, 190080]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 2, 'outer_gen_orders': [2, 2], 'outer_gen_pows': [3766055919999432475087560, 0], 'outer_gens': [[313829473127791269395703736, 295166449045956666895608370], [32993117835616624321406176, 16834429088759480192478853]], 'outer_group': '4.2', 'outer_hash': 2, 'outer_nilpotent': True, 'outer_order': 4, 'outer_permdeg': 4, 'outer_perms': [1, 6], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^2', 'pc_rank': None, 'perfect': False, 'permutation_degree': 26, 'pgroup': 0, 'primary_abelian_invariants': [2, 2], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 1], [20, 12], [22, 4], [48, 4], [50, 6], [100, 10], [121, 4], [200, 14], [220, 12], [242, 1], [288, 6], [480, 12], [528, 4], [576, 2]], 'representations': {'Perm': {'d': 26, 'gens': [32993117835616624321406176, 16834429088759480192478850]}}, 'schur_multiplier': [2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2], 'solvability_type': 13, 'solvable': False, 'subgroup_inclusions_known': False, 'subgroup_index_bound': 23232, 'supersolvable': False, 'sylow_subgroups_known': False, 'tex_name': '\\PSL(2,11)^2.D_4', 'transitive_degree': 44, 'wreath_data': None, 'wreath_product': None}