Properties

Label 3484800.e.1320._.G
Order $ 2^{4} \cdot 3 \cdot 5 \cdot 11 $
Index $ 2^{3} \cdot 3 \cdot 5 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_2^2\times \PSL(2,11)$
Order: \(2640\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 11 \)
Index: \(1320\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 11 \)
Exponent: \(330\)\(\medspace = 2 \cdot 3 \cdot 5 \cdot 11 \)
Generators: $\langle(1,17,7)(4,16,22)(5,19,6)(24,25), (3,13)(9,21)(10,11)(12,14)(23,26), (1,18)(4,7)(15,22)(16,19), (24,25)\rangle$ Copy content Toggle raw display
Derived length: $1$

The subgroup is nonabelian, an A-group, and nonsolvable.

Ambient group ($G$) information

Description: $\PSL(2,11)^2.D_4$
Order: \(3484800\)\(\medspace = 2^{7} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2} \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2^2\times \PSL(2,11)^2.C_2^2$
$\operatorname{Aut}(H)$ $S_3\times \PGL(2,11)$, of order \(7920\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \)
$\card{W}$ not computed

Related subgroups

Centralizer: not computed
Normalizer: not computed
Normal closure: not computed
Core: not computed
Autjugate subgroups: Subgroups are not computed up to automorphism.

Other information

Number of subgroups in this conjugacy class$110$
Möbius function not computed
Projective image not computed