-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': True, 'ambient': '2800.h', 'ambient_counter': 8, 'ambient_order': 2800, 'ambient_tex': 'C_{280}.C_{10}', 'central': False, 'central_factor': False, 'centralizer_order': 1400, 'characteristic': False, 'core_order': 8, 'counter': 53, 'cyclic': True, 'direct': None, 'hall': 0, 'label': '2800.h.70.e1.b1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': True, 'minimal': False, 'minimal_normal': False, 'nilpotent': True, 'normal': False, 'old_label': '70.e1.b1', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': None, 'quotient_Agroup': None, 'quotient_abelian': None, 'quotient_cyclic': None, 'quotient_hash': None, 'quotient_metabelian': None, 'quotient_nilpotent': None, 'quotient_order': 70, 'quotient_simple': None, 'quotient_solvable': None, 'quotient_supersolvable': None, 'quotient_tex': None, 'simple': False, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '40.2', 'subgroup_hash': 2, 'subgroup_order': 40, 'subgroup_tex': 'C_{40}', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '2800.h', 'aut_centralizer_order': 1680, 'aut_label': '70.e1', 'aut_quo_index': None, 'aut_stab_index': 4, 'aut_weyl_group': '16.10', 'aut_weyl_index': 6720, 'centralizer': '2.b1.a1', 'complements': None, 'conjugacy_class_count': 1, 'contained_in': ['10.e1.b1', '14.a1.a1'], 'contains': ['140.c1.b1', '350.a1.a1'], 'core': '350.a1.a1', 'coset_action_label': None, 'count': 2, 'diagramx': [805, -1, 8595, -1, 7128, -1, 9512, -1], 'generators': [350, 700, 1400, 282], 'label': '2800.h.70.e1.b1', 'mobius_quo': None, 'mobius_sub': 0, 'normal_closure': '14.a1.a1', 'normal_contained_in': None, 'normal_contains': None, 'normalizer': '2.b1.a1', 'old_label': '70.e1.b1', 'projective_image': '1400.98', 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '70.e1.b1', 'subgroup_fusion': None, 'weyl_group': '1.1'}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': True, 'abelian_quotient': '40.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': True, 'aut_cyclic': False, 'aut_derived_length': 1, 'aut_exponent': 4, 'aut_gen_orders': [2, 2, 4], 'aut_gens': [[1], [11], [21], [17]], 'aut_group': '16.10', 'aut_hash': 10, 'aut_nilpotency_class': 1, 'aut_nilpotent': True, 'aut_order': 16, 'aut_permdeg': 8, 'aut_perms': [5040, 120, 9], 'aut_phi_ratio': 1.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [4, 1, 2, 1], [5, 1, 4, 1], [8, 1, 4, 1], [10, 1, 4, 1], [20, 1, 8, 1], [40, 1, 16, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_2^2\\times C_4', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 4, 'autcent_group': '16.10', 'autcent_hash': 10, 'autcent_nilpotent': True, 'autcent_order': 16, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^2\\times C_4', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [2, 1, 1], [4, 1, 2], [5, 1, 4], [8, 1, 4], [10, 1, 4], [20, 1, 8], [40, 1, 16]], 'center_label': '40.2', 'center_order': 40, 'central_product': True, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '5.1'], 'composition_length': 4, 'conjugacy_classes_known': True, 'counter': 2, 'cyclic': True, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [['5.1', 1], ['8.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [4, 1, 2, 1], [5, 1, 4, 1], [8, 1, 4, 1], [10, 1, 4, 1], [20, 1, 8, 1], [40, 1, 16, 1]], 'element_repr_type': 'PC', 'elementary': 10, 'eulerian_function': 1, 'exponent': 40, 'exponents_of_order': [3, 1], 'factors_of_aut_order': [2], 'factors_of_order': [2, 5], 'faithful_reps': [[1, 0, 16]], 'familial': True, 'frattini_label': '4.1', 'frattini_quotient': '10.2', 'hash': 2, 'hyperelementary': 10, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1], 'inner_gens': [[1]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': 1, 'irrQ_degree': 16, 'irrQ_dim': 16, 'irrR_degree': 2, 'irrep_stats': [[1, 40]], 'label': '40.2', 'linC_count': 16, 'linC_degree': 1, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 8, 'linQ_degree_count': 2, 'linQ_dim': 8, 'linQ_dim_count': 2, 'linR_count': 8, 'linR_degree': 2, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C40', 'ngens': 4, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 8, 'number_characteristic_subgroups': 8, 'number_conjugacy_classes': 40, 'number_divisions': 8, 'number_normal_subgroups': 8, 'number_subgroup_autclasses': 8, 'number_subgroup_classes': 8, 'number_subgroups': 8, 'old_label': None, 'order': 40, 'order_factorization_type': 31, 'order_stats': [[1, 1], [2, 1], [4, 2], [5, 4], [8, 4], [10, 4], [20, 8], [40, 16]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 4, 'outer_gen_orders': [2, 2, 4], 'outer_gen_pows': [0, 0, 0], 'outer_gens': [[11], [21], [17]], 'outer_group': '16.10', 'outer_hash': 10, 'outer_nilpotent': True, 'outer_order': 16, 'outer_permdeg': 8, 'outer_perms': [5040, 120, 9], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^2\\times C_4', 'pc_rank': 1, 'perfect': False, 'permutation_degree': 13, 'pgroup': 0, 'primary_abelian_invariants': [8, 5], 'quasisimple': False, 'rank': 1, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 2], [2, 1], [4, 3], [8, 1], [16, 1]], 'representations': {'PC': {'code': 237242115, 'gens': [1], 'pres': [4, -2, -2, -2, -5, 8, 21, 34]}, 'GLFp': {'d': 2, 'p': 11, 'gens': [2212]}, 'Perm': {'d': 13, 'gens': [3608478720, 96, 1516969440, 482671440]}}, 'schur_multiplier': [], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [40], 'solvability_type': 0, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{40}', 'transitive_degree': 40, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '20.5', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 840, 'aut_gen_orders': [24, 12, 12, 12, 12, 12, 4], 'aut_gens': [[1, 10], [1253, 730], [191, 2630], [2601, 370], [1847, 2630], [1383, 2690], [1887, 90], [1927, 2090]], 'aut_group': None, 'aut_hash': 2535493821222932349, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 107520, 'aut_permdeg': 284, 'aut_perms': [16014521743007873418533517256305613837442594057511708770347821189403387475587201163356364967015362697960628241982793119418708448354540569386654733677203579768453045607062598923443003721174725023141539645878210942077723908676242338789025026337146164291346909382603617169042682308750716668314744131584414245261992183320651954103979830040919083728001169428507218020205480583367931883039149296252360546138956514928472832715871765639362263100637102925362777821053853881012032383420555885801428017896093702433424943095032097204082805032932366219211826824889255879364021161481182879, 103192984123822207052716290403853826323815748388343967994393351706925990089831529987135315964304930780996255940514337275627406131336114733128120981105347035703777508390324618973480967490217402108628153057459283458293895970243237839104772078210878641726759739318761501669790901176447758505502720492231835150067456606339676996684861295149290659988920874056069651280634628111382900611049554200281756669400446747880314072441544695985548292564518588055417937816418855832751790154947767381065789409751394730824550046714353988471223942273133998379952007276392479089824210352592219715, 14645264600787030178473052372624351058792079901702375105615525345132273430140559121217861705320227758181342541468562610771831896369693485872914613960008117457531702713039934161424975113216225884407037385131803908673476216782829710746266255430485832205499567794591969018710480017352717972169749387374588104555515493109026598208929717914551229062104799010177294437521457074976581883417037088794453372790859338286454344034737218465377126797003091334476531539909056586414892015208438513240481950810084573630751894523149283857147322942390722201226434167195922510345162019847315809, 25812964720944047101261302856763972238430057663977802045725996272418913557380422290598192005011775150767506559507483563455529670518896828099852534063892311975011127180404732316883494011458786261123215491993866325277325017436663302109685785441930164639465243069107550127292755745464001065099805807190851703874375283988647585427802266014190628783273492646394316588364713035819220077869729940894387578236973421812320489553034260461067255817347584285698776397640942431592658594988689226322564933965722057696565077959244850651977506488121775049310293477666511894773443635801018470, 26279551644614501814692043253013835697517431061387652404761324366700350910560800835752695181357675036111778206906279207815947781237409366739859484563744416455379219328689145972029247639913563745149493938387700354385357310415548730132727161800944717020218384196161337889567991019279512388654576397249215060125988833591663553574715278408906002927704213036636802853414764121420759216597573611086802510802806361549491866985607628089323290532463777031532091191041150305644497928659781076589207200003380545154533319702504140921535473611529549745947486434129072905315515264039749730, 7655278775946410290539585690733229153319518846143856951857024335316842065396152843497839528379755972249367671740050689845411054356587787900921616947479894985357569290189946501962362242981206381674439494105834881543336306853248283450606186614075833199585004832965263537741296603255650363151464015578843875243558489082549879499409099254098111814208645666861511758993703041528225935095323853468979587392662939784659991191349804029012364332895409449545277543182156844945880667984831356842573123488123356291066953707651927491052395548323884852314619739971223272692170767711730332, 45581711736249910331708477475973908562302541577974086278224245787130302676891115165587321339147290115922234891109947392084966001882700619075072155620932771929626918427272350754591569182885217971855266009228413699332987385272690202822244282630681634647194028147743297257366224309855413291594027822347772000955313455341845892454180570305633693773272466015006165582523812708870609286378184413992280077728477912844419564947412213653527956341235956332755436015009746253158823578096911926891408073791944343775938517870161316859780060194034325755420153262020230633816627581598406963], 'aut_phi_ratio': 112.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [4, 2, 1, 1], [4, 140, 2, 1], [5, 1, 4, 1], [5, 2, 2, 1], [5, 2, 8, 1], [7, 2, 3, 1], [8, 2, 2, 1], [10, 1, 4, 1], [10, 2, 2, 1], [10, 2, 8, 1], [14, 2, 3, 1], [20, 2, 4, 2], [20, 2, 16, 1], [20, 140, 8, 1], [28, 2, 6, 1], [35, 2, 12, 2], [35, 2, 48, 1], [40, 2, 8, 2], [40, 2, 32, 1], [56, 2, 12, 1], [70, 2, 12, 2], [70, 2, 48, 1], [140, 2, 24, 2], [140, 2, 96, 1], [280, 2, 48, 2], [280, 2, 192, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_{140}.C_6.C_2.C_2^6', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 4, 'autcent_group': '16.10', 'autcent_hash': 10, 'autcent_nilpotent': True, 'autcent_order': 16, 'autcent_solvable': True, 'autcent_split': False, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^2\\times C_4', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 420, 'autcentquo_group': None, 'autcentquo_hash': 1492037419303921345, 'autcentquo_nilpotent': False, 'autcentquo_order': 6720, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_{70}.(C_2^3\\times C_{12})', 'cc_stats': [[1, 1, 1], [2, 1, 1], [4, 2, 1], [4, 140, 2], [5, 1, 4], [5, 2, 10], [7, 2, 3], [8, 2, 2], [10, 1, 4], [10, 2, 10], [14, 2, 3], [20, 2, 24], [20, 140, 8], [28, 2, 6], [35, 2, 72], [40, 2, 48], [56, 2, 12], [70, 2, 72], [140, 2, 144], [280, 2, 288]], 'center_label': '10.2', 'center_order': 10, 'central_product': True, 'central_quotient': '280.26', 'commutator_count': 1, 'commutator_label': '140.4', 'complements_known': True, 'complete': False, 'complex_characters_known': False, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '5.1', '5.1', '7.1'], 'composition_length': 7, 'conjugacy_classes_known': True, 'counter': 8, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['5.1', 1], ['560.68', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [4, 2, 1, 1], [4, 140, 1, 2], [5, 1, 4, 1], [5, 2, 2, 1], [5, 2, 4, 2], [7, 2, 3, 1], [8, 2, 2, 1], [10, 1, 4, 1], [10, 2, 2, 1], [10, 2, 4, 2], [14, 2, 3, 1], [20, 2, 4, 2], [20, 2, 8, 2], [20, 140, 4, 2], [28, 2, 6, 1], [35, 2, 12, 2], [35, 2, 24, 2], [40, 2, 8, 2], [40, 2, 16, 2], [56, 2, 12, 1], [70, 2, 12, 2], [70, 2, 24, 2], [140, 2, 24, 2], [140, 2, 48, 2], [280, 2, 48, 2], [280, 2, 96, 2]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 18, 'exponent': 280, 'exponents_of_order': [4, 2, 1], 'factors_of_aut_order': [2, 3, 5, 7], 'factors_of_order': [2, 5, 7], 'faithful_reps': [[2, 0, 192]], 'familial': False, 'frattini_label': '4.1', 'frattini_quotient': '700.33', 'hash': 4146598981154431277, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 140, 'inner_gen_orders': [2, 140], 'inner_gens': [[1, 2790], [21, 10]], 'inner_hash': 26, 'inner_nilpotent': False, 'inner_order': 280, 'inner_split': False, 'inner_tex': 'D_{140}', 'inner_used': [1, 2], 'irrC_degree': 2, 'irrQ_degree': 192, 'irrQ_dim': 192, 'irrR_degree': None, 'irrep_stats': [[1, 20], [2, 695]], 'label': '2800.h', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C280.C10', 'ngens': 7, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 34, 'number_characteristic_subgroups': 34, 'number_conjugacy_classes': 715, 'number_divisions': 44, 'number_normal_subgroups': 38, 'number_subgroup_autclasses': 64, 'number_subgroup_classes': 88, 'number_subgroups': 736, 'old_label': None, 'order': 2800, 'order_factorization_type': 321, 'order_stats': [[1, 1], [2, 1], [4, 282], [5, 24], [7, 6], [8, 4], [10, 24], [14, 6], [20, 1168], [28, 12], [35, 144], [40, 96], [56, 24], [70, 144], [140, 288], [280, 576]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 12, 'outer_gen_orders': [2, 2, 2, 4, 12], 'outer_gen_pows': [0, 0, 350, 0, 0], 'outer_gens': [[1, 710], [1, 1410], [351, 10], [1, 1130], [1757, 2430]], 'outer_group': '384.19878', 'outer_hash': 19878, 'outer_nilpotent': True, 'outer_order': 384, 'outer_permdeg': 17, 'outer_perms': [486985704, 20922789888000, 87178291200, 4032000, 21010458068907], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^3\\times C_4\\times C_{12}', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 33, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 5], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 1], [4, 7], [6, 2], [8, 6], [12, 1], [16, 4], [24, 5], [32, 2], [48, 6], [96, 4], [192, 2]], 'representations': {'PC': {'code': '5575144021664765978760299061298352131462519764407', 'gens': [1, 3], 'pres': [7, -2, -5, -2, -2, -2, -5, -7, 14, 9808, 58592, 58, 77843, 80, 96604, 102, 114245, 250, 117606]}, 'GLFp': {'d': 2, 'p': 281, 'gens': [1908171527, 2085675857, 114929]}, 'Perm': {'d': 33, 'gens': [280408000847069544612145368990841440, 44635285094441, 552036980173586265260141429650007588]}}, 'schur_multiplier': [], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 10], 'solvability_type': 6, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{280}.C_{10}', 'transitive_degree': 560, 'wreath_data': None, 'wreath_product': False}