Properties

Label 2800.h.70.e1.b1
Order $ 2^{3} \cdot 5 $
Index $ 2 \cdot 5 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{40}$
Order: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Index: \(70\)\(\medspace = 2 \cdot 5 \cdot 7 \)
Exponent: \(40\)\(\medspace = 2^{3} \cdot 5 \)
Generators: $b^{35}, b^{70}, b^{140}, a^{2}b^{28}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,5$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_{280}.C_{10}$
Order: \(2800\)\(\medspace = 2^{4} \cdot 5^{2} \cdot 7 \)
Exponent: \(280\)\(\medspace = 2^{3} \cdot 5 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian and metacyclic (hence solvable, supersolvable, monomial, and metabelian).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{140}.C_6.C_2.C_2^6$
$\operatorname{Aut}(H)$ $C_2^2\times C_4$, of order \(16\)\(\medspace = 2^{4} \)
$\operatorname{res}(S)$$C_2^2\times C_4$, of order \(16\)\(\medspace = 2^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(1680\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \cdot 7 \)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_5\times C_{280}$
Normalizer:$C_5\times C_{280}$
Normal closure:$C_5\times C_{40}$
Core:$C_8$
Minimal over-subgroups:$C_{280}$$C_5\times C_{40}$
Maximal under-subgroups:$C_{20}$$C_8$
Autjugate subgroups:2800.h.70.e1.a1

Other information

Number of subgroups in this conjugacy class$2$
Möbius function$0$
Projective image$C_5\times D_{140}$