-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'ambient': '25992.bj', 'ambient_counter': 36, 'ambient_order': 25992, 'ambient_tex': 'D_{19}^2:C_{18}', 'central': False, 'central_factor': False, 'centralizer_order': 1, 'characteristic': True, 'core_order': 1444, 'counter': 19, 'cyclic': False, 'direct': False, 'hall': 0, 'label': '25992.bj.18.b1.a1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': False, 'minimal': False, 'minimal_normal': False, 'nilpotent': False, 'normal': True, 'old_label': '18.b1.a1', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': '18.2', 'quotient_Agroup': True, 'quotient_abelian': True, 'quotient_cyclic': True, 'quotient_hash': 2, 'quotient_metabelian': True, 'quotient_nilpotent': True, 'quotient_order': 18, 'quotient_simple': False, 'quotient_solvable': True, 'quotient_supersolvable': True, 'quotient_tex': 'C_{18}', 'simple': False, 'solvable': True, 'special_labels': ['C3'], 'split': True, 'standard_generators': False, 'stem': False, 'subgroup': '1444.8', 'subgroup_hash': 8, 'subgroup_order': 1444, 'subgroup_tex': 'C_{19}^2:C_4', 'supersolvable': False, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '25992.bj', 'aut_centralizer_order': None, 'aut_label': '18.b1', 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': '25992.a1.a1', 'complements': ['1444.a1.b1', '1444.a1.a1'], 'conjugacy_class_count': 1, 'contained_in': ['6.b1.a1', '9.a1.a1'], 'contains': ['36.a1.a1', '6498.b1.a1'], 'core': '18.b1.a1', 'coset_action_label': None, 'count': 1, 'diagramx': [464, 5485, 887, 6429, 9716, 5495, 8674, 4784], 'generators': [18, 36, 1368, 20592], 'label': '25992.bj.18.b1.a1', 'mobius_quo': 0, 'mobius_sub': 0, 'normal_closure': '18.b1.a1', 'normal_contained_in': ['6.b1.a1', '9.a1.a1'], 'normal_contains': ['36.a1.a1'], 'normalizer': '1.a1.a1', 'old_label': '18.b1.a1', 'projective_image': '25992.bj', 'quotient_action_image': '18.2', 'quotient_action_kernel': '1.1', 'quotient_action_kernel_order': 1, 'quotient_fusion': None, 'short_label': '18.b1.a1', 'subgroup_fusion': None, 'weyl_group': '25992.bj'}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '4.1', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 6840, 'aut_gen_orders': [18, 36, 36], 'aut_gens': [[1, 4, 76], [1131, 20, 1092], [855, 132, 440], [87, 1104, 756]], 'aut_group': None, 'aut_hash': 5898335423961875981, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 259920, 'aut_permdeg': 722, 'aut_perms': [1189470010152967364664035604004907290880084874680418322549107008596240760121943374465191820077344443402969096526392470434234718557568089950850638400760640749995628025706711052242155256695186936432861068972688310450081605280454234507119843578067244556960870549518689142325090089063449872664500839991581981149389860256414407203880008454367614642749618969520207668147061302672524682621265490269476556963800509556693076611255575888771983813953043515720423798981236472424582839572346681143305604765132560925174943267966532004681104982974359607624043897475831803330301384823675488642155846889842697498844054243003611878163676376272197051345988587626244343509619048867091095434925546188467901313183158813088661641295652949721569997074477097478743496826326323584463178140738948988318483571844884956369108815481808453839583285136440639785853266809816114673385822572268219198638127548122045889995553203689053186838488801648616578453158284704644901943498015143108134401416254178029506089961477061918758878182025050293624861210304932714560670846853691205383712339378933273025162947185662361658483316379478597768976118307382168931715885280880178796572454393425929961261331182663740654877927702908663978052825392568178456801270830109498990950065382193703651951922281907880555767011524581093286885339086244286418371023590557132395703154931002108906771252046837367386710817899312979714844046168838429905648062065504741565070535048458324347753172254979692962428650407823851183202521299943847029590383194485849954591982472957021262252614882642106185914796495751598844935374815845376451523016955870608108253679148539679474183018747190303622299795437372411466012828680088225075634491632724933350262046976944961591745153161115938861533641629884813111373073967313172340104138, 1207414241028092210993520016781457288452870592166483623570158135646465036615624949407996059342965646063044754979468246620604162090982685420747087744456465891873849586068511750990032327771322442818814387850994508145071720898101317900953103715395680055690762250053869133878320767029779234200212376352268300339004430793021758456365329237935475082999866867123206885088857303525841595186873749570708150384283799864916499367289262447372107533917710365459354298276425554081031889434550052893230542690460714386910893820136181039248055461313505169926493089946423061274546729440681077737091636931132517795430723882001440526394623236172110772409931120079945898808400741380428619665466906911270050767785889991007249221188848671851063020805780219991836374117894596939498230704255033703561590834349053839644909909627207378114616240508840482692836597739984346314688349132988933441305776998287775734093298257252289532476890089448986774349376560925193346331250386707536932560538328801939251444227407668875959313027702432093672051451739857463822210560012464334419592348753530237221089078860008961080314161374051033238154562587439872078180085354193706808725358183346570537021994464812666087055097421182796897706615109242389432481541213900587332200303476933179144572083693015743084252997046975158527356143234657446648951209575357444125601856565004658307292652801195925354056525111898960451584367403787828747472425042155581691183927467116371660485909326400563186520380800025348025634810276114073575604074666460056744652324366893713724703215100842549255430324119912522483506366091723159072290523426791795659265167902728953437096701171823453002265272568896940686626348379289229865045788667167423664635553363918688446825504442811524734476232638139819508703129245401021305651966, 436955681794918096643209036891495785807682213219864690990347753567439812908792773390916966308581503251664499936668671258083144700009686894487271493058265406651066905725815763816297870455634419508245514880085383979770028017849720021483829656451571473776525292545626058522487583903469420733783901463784898605722018660091669998919277976267647472517159282642752993465175605797359538024470925453852848299661195703410803849719587951673088488884603534891486447480649403826233517403177199583029636913978194949498174486080609482604063603898364847860944657642624611531386397408751595448306740477871945148538113350316143697722454965408615112732688062046683114801582467447509713850648529397102840547970832592295102425920388158494079010554255385581220068240146735894996669727291860182000731525411724992392108740650730047831838468824221480897734692451405795262592869895370648655566236192313406864793882728324923331098300122152271947685566681710225639333907543856385155305870660019558626267736904243503620144712929477224565053448246027857562452893212694989771068526645120804005583955924243953627313099565859995717811258005466392499939502362613425410366456069246803544838254207923777238851898926988998496145718910915128667950482998881135443196507667954762845313260019433919858558941232966457940610557454018140151654395256781786265660341904469599181868261859254103286972730652661432992191312959839546674176452288969137124716457781260944581626363840552117731093405045225661591148831663973251045101463308345251492919657505089811475873910401470191824300221518468743562049899378336249822461377143379965539342043969189192651202651283335233843722403336817809736673466566825444076145592053573273424381613313067161162026390638219698904007621546281529052490792914609426872457919], 'aut_phi_ratio': 380.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 361, 1, 1], [4, 361, 2, 1], [19, 4, 90, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_{19}^2.C_{360}.C_2', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 1, 'autcent_group': '1.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 1, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_1', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 6840, 'autcentquo_group': None, 'autcentquo_hash': 5898335423961875981, 'autcentquo_nilpotent': False, 'autcentquo_order': 259920, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'C_{19}^2.C_{60}.C_6.C_2', 'cc_stats': [[1, 1, 1], [2, 361, 1], [4, 361, 2], [19, 4, 90]], 'center_label': '1.1', 'center_order': 1, 'central_product': False, 'central_quotient': '1444.8', 'commutator_count': 1, 'commutator_label': '361.2', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '19.1', '19.1'], 'composition_length': 4, 'conjugacy_classes_known': True, 'counter': 8, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 361, 1, 1], [4, 361, 2, 1], [19, 4, 9, 10]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 6, 'exponent': 76, 'exponents_of_order': [2, 2], 'factors_of_aut_order': [2, 3, 5, 19], 'factors_of_order': [2, 19], 'faithful_reps': [[4, 1, 90]], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '1444.8', 'hash': 8, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 76, 'inner_gen_orders': [4, 19, 19], 'inner_gens': [[1, 404, 1004], [1121, 4, 76], [593, 4, 76]], 'inner_hash': 8, 'inner_nilpotent': False, 'inner_order': 1444, 'inner_split': False, 'inner_tex': 'C_{19}^2:C_4', 'inner_used': [1, 2], 'irrC_degree': 4, 'irrQ_degree': 36, 'irrQ_dim': 36, 'irrR_degree': 4, 'irrep_stats': [[1, 4], [4, 90]], 'label': '1444.8', 'linC_count': 90, 'linC_degree': 4, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 36, 'linQ_degree_count': 10, 'linQ_dim': 36, 'linQ_dim_count': 10, 'linR_count': 90, 'linR_degree': 4, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C19^2:C4', 'ngens': 4, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 4, 'number_characteristic_subgroups': 4, 'number_conjugacy_classes': 94, 'number_divisions': 13, 'number_normal_subgroups': 4, 'number_subgroup_autclasses': 8, 'number_subgroup_classes': 26, 'number_subgroups': 1126, 'old_label': None, 'order': 1444, 'order_factorization_type': 22, 'order_stats': [[1, 1], [2, 361], [4, 722], [19, 360]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 90, 'outer_gen_orders': [2, 90], 'outer_gen_pows': [0, 3], 'outer_gens': [[3, 404, 1036], [1, 468, 4]], 'outer_group': '180.9', 'outer_hash': 9, 'outer_nilpotent': False, 'outer_order': 180, 'outer_permdeg': 16, 'outer_perms': [7, 1401602631172], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_9\\times D_{10}', 'pc_rank': 3, 'perfect': False, 'permutation_degree': 38, 'pgroup': 0, 'primary_abelian_invariants': [4], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 2], [2, 1], [36, 10]], 'representations': {'PC': {'code': 4024907219024219023955, 'gens': [1, 3, 4], 'pres': [4, -2, -2, -19, 19, 8, 4850, 438, 16067, 10951]}, 'GLFq': {'d': 2, 'q': 361, 'gens': [13080579430, 16108897606, 861943095, 15342631460]}, 'Perm': {'d': 38, 'gens': [275275061824526900926319591509972947591168000, 6493770503706733535750496841697542299647999, 226337273055722118539418330971692413545414400, 247747555642074210833687632522699327410739200]}}, 'schur_multiplier': [19], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [4], 'solvability_type': 8, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'C_{19}^2:C_4', 'transitive_degree': 38, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '36.5', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 1368, 'aut_gen_orders': [72, 72, 18], 'aut_gens': [[1, 18, 72, 1368], [17443, 8874, 23256, 24984], [24355, 21762, 20520, 23976], [1981, 4446, 648, 14688]], 'aut_group': None, 'aut_hash': 6148826751490991875, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 51984, 'aut_permdeg': 437, 'aut_perms': [408544647600404212256818943708568826830909134353352796093806874356933065903780751693868076991804389662423853780276910719388098822194417166243278187358100799159135896664095187585010417198584917832668772162596209541865913693204488834586017797813294359179028353439453918008915011473480752692310661894181807939688715200668381591933299967624071839809981573058917910638425208010090878768314083487416921969046516144502766553641466977239505063933929561801544084170563725776884225437635904697027237758054983626664454641870854943387375868726504728796034522998432552617588466290003703105905237872444856102137661141558723689207655523847523433198958756903737671976814152683658767962390461819887436855248040568411679631539243693739899355807549577093141668122399965814011785867727162073467976862837651574173186819977130457059500087421593438365856640201266960748993876511944950454034556031417080451514844419537913172387751519689440127581327993024557237709595506910511333466976788075, 398550895071167894073004124136273910237884331604406285180367222657694067839411610434728974530203518455664436405456551387628111365552955733225632342631546833170768255419246905612081020025738928345606985235000438906144962945515356847910634621891713180030941230247536125192780192606904976264449419195117086299641627254071485846303808647123986445820505017702874163839415767054917151501870005855542014157442043445077775786197860245948839060102334968171022577598438425214047574657314198547176919584226086337682994607471250257201234908441416434582990979313282839322959169810030194915884139364998161720751564213501486111319362589664778903698489268954500546532476702115686826705642673183856433616840629968532053157058941963557984388466103836080097879884585171637219290157828859376866907670925426535598078944236061083658036970352369495776479930962561777350822418404439203698179532948917535382658097225978879455988900253497453290059816922574843217859289241373128954671298680136, 226172693307271001229789048032236725308208876794409195037133138309039087986523187484715945261778670004368795969427538580069545404399678834518350520309505949135726996649430102923384634026384118489441423024966986314507226231123585923372067482268039288466481824387860807396732633435936766036876370953260025236098631518110766305364739902314175399078007978678748956072081392734087641426724856465821482371178838795937806128866137449259298205425547900120351577178697844718994758233921298306590467854909929649804334039919858415591160062037015212213202254529187097241674732370680781736488184126467515336723733961815413807960661732758967365002883074565969576066559540037488748555903799879440941139305899293718284731096286264854525392800142659156076278295009197074066930595811484553182096943467941893926523896919806575983628623990363134480461435743277462453918292332996275587626838261743165379055301458501990332147447297784281401579951542201100957295395460332085110187026230900], 'aut_phi_ratio': 6.333333333333333, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 38, 2, 1], [2, 361, 1, 1], [3, 361, 1, 2], [4, 722, 1, 1], [6, 361, 1, 2], [6, 722, 2, 2], [9, 361, 1, 6], [12, 722, 1, 2], [18, 361, 1, 6], [18, 722, 2, 6], [19, 36, 2, 1], [19, 72, 2, 2], [36, 722, 1, 6], [38, 684, 2, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_{19}^2.C_{36}.C_2^2', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 1, 'autcent_group': '1.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 1, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_1', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 1368, 'autcentquo_group': None, 'autcentquo_hash': 6148826751490991875, 'autcentquo_nilpotent': False, 'autcentquo_order': 51984, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'C_{19}^2.C_{36}.C_2^2', 'cc_stats': [[1, 1, 1], [2, 38, 2], [2, 361, 1], [3, 361, 2], [4, 722, 1], [6, 361, 2], [6, 722, 4], [9, 361, 6], [12, 722, 2], [18, 361, 6], [18, 722, 12], [19, 36, 2], [19, 72, 4], [36, 722, 6], [38, 684, 2]], 'center_label': '1.1', 'center_order': 1, 'central_product': False, 'central_quotient': '25992.bj', 'commutator_count': 1, 'commutator_label': '722.4', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '3.1', '3.1', '19.1', '19.1'], 'composition_length': 7, 'conjugacy_classes_known': True, 'counter': 36, 'cyclic': False, 'derived_length': 3, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 38, 1, 2], [2, 361, 1, 1], [3, 361, 2, 1], [4, 722, 1, 1], [6, 361, 2, 1], [6, 722, 2, 2], [9, 361, 6, 1], [12, 722, 2, 1], [18, 361, 6, 1], [18, 722, 6, 2], [19, 36, 1, 2], [19, 72, 1, 4], [36, 722, 6, 1], [38, 684, 1, 2]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 4320, 'exponent': 684, 'exponents_of_order': [3, 2, 2], 'factors_of_aut_order': [2, 3, 19], 'factors_of_order': [2, 3, 19], 'faithful_reps': [[36, 1, 4], [72, 1, 4]], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '25992.bj', 'hash': 3331103429084464448, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 684, 'inner_gen_orders': [18, 4, 19, 19], 'inner_gens': [[1, 24246, 19584, 17784], [24229, 18, 6768, 2016], [7849, 20682, 72, 1368], [9577, 738, 72, 1368]], 'inner_hash': 3331103429084464448, 'inner_nilpotent': False, 'inner_order': 25992, 'inner_split': False, 'inner_tex': 'D_{19}^2:C_{18}', 'inner_used': [1, 2], 'irrC_degree': 36, 'irrQ_degree': 36, 'irrQ_dim': 36, 'irrR_degree': 36, 'irrep_stats': [[1, 36], [2, 9], [36, 4], [72, 4]], 'label': '25992.bj', 'linC_count': 4, 'linC_degree': 36, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 36, 'linQ_degree_count': 4, 'linQ_dim': 36, 'linQ_dim_count': 4, 'linR_count': 4, 'linR_degree': 36, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': True, 'name': 'D19^2:C18', 'ngens': 7, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 40, 'number_characteristic_subgroups': 13, 'number_conjugacy_classes': 53, 'number_divisions': 23, 'number_normal_subgroups': 19, 'number_subgroup_autclasses': 63, 'number_subgroup_classes': 102, 'number_subgroups': 11664, 'old_label': None, 'order': 25992, 'order_factorization_type': 321, 'order_stats': [[1, 1], [2, 437], [3, 722], [4, 722], [6, 3610], [9, 2166], [12, 1444], [18, 10830], [19, 360], [36, 4332], [38, 1368]], 'outer_abelian': True, 'outer_cyclic': True, 'outer_equivalence': False, 'outer_exponent': 2, 'outer_gen_orders': [2], 'outer_gen_pows': [22162], 'outer_gens': [[14491, 8442, 6840, 17568]], 'outer_group': '2.1', 'outer_hash': 1, 'outer_nilpotent': True, 'outer_order': 2, 'outer_permdeg': 2, 'outer_perms': [1], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 38, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 9], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 5], [4, 1], [6, 4], [12, 1], [36, 4], [72, 4]], 'representations': {'PC': {'code': '40982482990919089663600766416184331648319524383722826096904233817165304008350517658522744464148979', 'gens': [1, 4, 6, 7], 'pres': [7, -2, -3, -3, -2, -2, -19, 19, 14, 50, 678891, 225046, 90821, 80, 255784, 53561, 53148, 822533, 25716, 5563, 15818, 1545, 871422, 569785, 122912, 5515, 33550]}, 'Perm': {'d': 38, 'gens': [13933637039504757885110485832213800225661400, 285677560510209893698935868588048431477329440]}}, 'schur_multiplier': [2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 18], 'solvability_type': 11, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'D_{19}^2:C_{18}', 'transitive_degree': 38, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': True, 'abelian': True, 'abelian_quotient': '18.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': True, 'aut_cyclic': True, 'aut_derived_length': 1, 'aut_exponent': 6, 'aut_gen_orders': [6], 'aut_gens': [[1], [11]], 'aut_group': '6.2', 'aut_hash': 2, 'aut_nilpotency_class': 1, 'aut_nilpotent': True, 'aut_order': 6, 'aut_permdeg': 5, 'aut_perms': [27], 'aut_phi_ratio': 1.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [3, 1, 2, 1], [6, 1, 2, 1], [9, 1, 6, 1], [18, 1, 6, 1]], 'aut_supersolvable': True, 'aut_tex': 'C_6', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 6, 'autcent_group': '6.2', 'autcent_hash': 2, 'autcent_nilpotent': True, 'autcent_order': 6, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_6', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [2, 1, 1], [3, 1, 2], [6, 1, 2], [9, 1, 6], [18, 1, 6]], 'center_label': '18.2', 'center_order': 18, 'central_product': True, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '3.1', '3.1'], 'composition_length': 3, 'conjugacy_classes_known': True, 'counter': 2, 'cyclic': True, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [['2.1', 1], ['9.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [3, 1, 2, 1], [6, 1, 2, 1], [9, 1, 6, 1], [18, 1, 6, 1]], 'element_repr_type': 'PC', 'elementary': 6, 'eulerian_function': 1, 'exponent': 18, 'exponents_of_order': [2, 1], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [[1, 0, 6]], 'familial': True, 'frattini_label': '3.1', 'frattini_quotient': '6.2', 'hash': 2, 'hyperelementary': 6, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1], 'inner_gens': [[1]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': 1, 'irrQ_degree': 6, 'irrQ_dim': 6, 'irrR_degree': 2, 'irrep_stats': [[1, 18]], 'label': '18.2', 'linC_count': 6, 'linC_degree': 1, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 6, 'linQ_degree_count': 1, 'linQ_dim': 6, 'linQ_dim_count': 1, 'linR_count': 3, 'linR_degree': 2, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C18', 'ngens': 3, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 6, 'number_characteristic_subgroups': 6, 'number_conjugacy_classes': 18, 'number_divisions': 6, 'number_normal_subgroups': 6, 'number_subgroup_autclasses': 6, 'number_subgroup_classes': 6, 'number_subgroups': 6, 'old_label': None, 'order': 18, 'order_factorization_type': 22, 'order_stats': [[1, 1], [2, 1], [3, 2], [6, 2], [9, 6], [18, 6]], 'outer_abelian': True, 'outer_cyclic': True, 'outer_equivalence': False, 'outer_exponent': 6, 'outer_gen_orders': [6], 'outer_gen_pows': [0], 'outer_gens': [[11]], 'outer_group': '6.2', 'outer_hash': 2, 'outer_nilpotent': True, 'outer_order': 6, 'outer_permdeg': 5, 'outer_perms': [27], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_6', 'pc_rank': 1, 'perfect': False, 'permutation_degree': 11, 'pgroup': 0, 'primary_abelian_invariants': [2, 9], 'quasisimple': False, 'rank': 1, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 2], [2, 2], [6, 2]], 'representations': {'PC': {'code': 5403, 'gens': [1], 'pres': [3, -2, -3, -3, 6, 22]}, 'GLZ': {'b': 3, 'd': 6, 'gens': [71343819913236817]}, 'GLFp': {'d': 2, 'p': 17, 'gens': [26270]}, 'Perm': {'d': 11, 'gens': [3628800, 357120, 80884]}}, 'schur_multiplier': [], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [18], 'solvability_type': 0, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{18}', 'transitive_degree': 18, 'wreath_data': None, 'wreath_product': False}