Properties

Label 25992.bj.18.b1.a1
Order $ 2^{2} \cdot 19^{2} $
Index $ 2 \cdot 3^{2} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{19}^2:C_4$
Order: \(1444\)\(\medspace = 2^{2} \cdot 19^{2} \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(76\)\(\medspace = 2^{2} \cdot 19 \)
Generators: $b, b^{2}, d, cd^{15}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, monomial (hence solvable), metabelian, and an A-group.

Ambient group ($G$) information

Description: $D_{19}^2:C_{18}$
Order: \(25992\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 19^{2} \)
Exponent: \(684\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 19 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_{18}$
Order: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Automorphism Group: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{19}^2.C_{36}.C_2^2$
$\operatorname{Aut}(H)$ $C_{19}^2.C_{360}.C_2$
$W$$D_{19}^2:C_{18}$, of order \(25992\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 19^{2} \)

Related subgroups

Centralizer:$C_1$
Normalizer:$D_{19}^2:C_{18}$
Complements:$C_{18}$ $C_{18}$
Minimal over-subgroups:$C_{19}^2:C_{12}$$D_{19}\wr C_2$
Maximal under-subgroups:$C_{19}:D_{19}$$C_4$

Other information

Möbius function$0$
Projective image$D_{19}^2:C_{18}$