-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'ambient': '1728.21218', 'ambient_counter': 21218, 'ambient_order': 1728, 'ambient_tex': 'C_{24}.\\PSU(3,2)', 'central': False, 'central_factor': False, 'centralizer_order': 216, 'characteristic': True, 'core_order': 9, 'counter': 88, 'cyclic': False, 'direct': False, 'hall': 0, 'label': '1728.21218.192.a1.a1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': True, 'minimal': False, 'minimal_normal': True, 'nilpotent': True, 'normal': True, 'old_label': '192.a1.a1', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': '192.65', 'quotient_Agroup': False, 'quotient_abelian': False, 'quotient_cyclic': False, 'quotient_hash': 65, 'quotient_metabelian': True, 'quotient_nilpotent': False, 'quotient_order': 192, 'quotient_simple': False, 'quotient_solvable': True, 'quotient_supersolvable': True, 'quotient_tex': 'C_{48}.C_4', 'simple': False, 'solvable': True, 'special_labels': ['D2', 'C7'], 'split': True, 'standard_generators': False, 'stem': False, 'subgroup': '9.2', 'subgroup_hash': 2, 'subgroup_order': 9, 'subgroup_tex': 'C_3^2', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '1728.21218', 'aut_centralizer_order': 1728, 'aut_label': '192.a1', 'aut_quo_index': 1, 'aut_stab_index': 1, 'aut_weyl_group': '16.8', 'aut_weyl_index': 1728, 'centralizer': '8.b1.a1', 'complements': ['9.a1.a1'], 'conjugacy_class_count': 1, 'contained_in': ['64.a1.a1', '96.a1.a1', '96.e1.a1'], 'contains': ['576.b1.a1'], 'core': '192.a1.a1', 'coset_action_label': None, 'count': 1, 'diagramx': [109, 1255, 317, 1431, 1111, 2445, 9413, 2445], 'generators': [192, 576], 'label': '1728.21218.192.a1.a1', 'mobius_quo': -1, 'mobius_sub': 0, 'normal_closure': '192.a1.a1', 'normal_contained_in': ['64.a1.a1', '96.a1.a1'], 'normal_contains': ['1728.a1.a1'], 'normalizer': '1.a1.a1', 'old_label': '192.a1.a1', 'projective_image': '1728.21218', 'quotient_action_image': '8.4', 'quotient_action_kernel': '24.2', 'quotient_action_kernel_order': 24, 'quotient_fusion': None, 'short_label': '192.a1.a1', 'subgroup_fusion': None, 'weyl_group': '8.4'}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'abelian_quotient': '9.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 4, 'aut_exponent': 24, 'aut_gen_orders': [2, 3], 'aut_gens': [[1, 3], [1, 7], [4, 3]], 'aut_group': '48.29', 'aut_hash': 29, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 48, 'aut_permdeg': 8, 'aut_perms': [31834, 28334], 'aut_phi_ratio': 8.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [3, 1, 8, 1]], 'aut_supersolvable': False, 'aut_tex': '\\GL(2,3)', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 24, 'autcent_group': '48.29', 'autcent_hash': 29, 'autcent_nilpotent': False, 'autcent_order': 48, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': False, 'autcent_tex': '\\GL(2,3)', 'autcentquo_abelian': True, 'autcentquo_cyclic': True, 'autcentquo_exponent': 1, 'autcentquo_group': '1.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': True, 'autcentquo_order': 1, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'C_1', 'cc_stats': [[1, 1, 1], [3, 1, 8]], 'center_label': '9.2', 'center_order': 9, 'central_product': True, 'central_quotient': '1.1', 'commutator_count': 0, 'commutator_label': '1.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['3.1', '3.1'], 'composition_length': 2, 'conjugacy_classes_known': True, 'counter': 2, 'cyclic': False, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [['3.1', 2]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [3, 1, 2, 4]], 'element_repr_type': 'PC', 'elementary': 3, 'eulerian_function': 1, 'exponent': 3, 'exponents_of_order': [2], 'factors_of_aut_order': [2, 3], 'factors_of_order': [3], 'faithful_reps': [], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '9.2', 'hash': 2, 'hyperelementary': 3, 'inner_abelian': True, 'inner_cyclic': True, 'inner_exponent': 1, 'inner_gen_orders': [1, 1], 'inner_gens': [[1, 3], [1, 3]], 'inner_hash': 1, 'inner_nilpotent': True, 'inner_order': 1, 'inner_split': True, 'inner_tex': 'C_1', 'inner_used': [], 'irrC_degree': -1, 'irrQ_degree': -1, 'irrQ_dim': -1, 'irrR_degree': -1, 'irrep_stats': [[1, 9]], 'label': '9.2', 'linC_count': 24, 'linC_degree': 2, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 4, 'linQ_degree_count': 6, 'linQ_dim': 4, 'linQ_dim_count': 6, 'linR_count': 6, 'linR_degree': 4, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C3^2', 'ngens': 2, 'nilpotency_class': 1, 'nilpotent': True, 'normal_counts': [0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 2, 'number_characteristic_subgroups': 2, 'number_conjugacy_classes': 9, 'number_divisions': 5, 'number_normal_subgroups': 6, 'number_subgroup_autclasses': 3, 'number_subgroup_classes': 6, 'number_subgroups': 6, 'old_label': None, 'order': 9, 'order_factorization_type': 2, 'order_stats': [[1, 1], [3, 8]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 24, 'outer_gen_orders': [2, 3], 'outer_gen_pows': [0, 0], 'outer_gens': [[1, 7], [4, 3]], 'outer_group': '48.29', 'outer_hash': 29, 'outer_nilpotent': False, 'outer_order': 48, 'outer_permdeg': 8, 'outer_perms': [31834, 28334], 'outer_solvable': True, 'outer_supersolvable': False, 'outer_tex': '\\GL(2,3)', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 6, 'pgroup': 3, 'primary_abelian_invariants': [3, 3], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 1], [2, 4]], 'representations': {'PC': {'code': 0, 'gens': [1, 2], 'pres': [2, -3, 3]}, 'GLZ': {'b': 3, 'd': 4, 'gens': [16858733, 35931237]}, 'GLFp': {'d': 2, 'p': 7, 'gens': [687, 1374]}, 'Perm': {'d': 6, 'gens': [240, 4]}}, 'schur_multiplier': [3], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [3, 3], 'solvability_type': 1, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_3^2', 'transitive_degree': 9, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '8.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 48, 'aut_gen_orders': [6, 4, 4, 12, 24, 24], 'aut_gens': [[1, 4, 192, 576], [71, 28, 192, 1536], [177, 116, 384, 1152], [883, 1532, 1536, 960], [883, 1420, 768, 1344], [685, 1324, 192, 1536], [1399, 460, 384, 768]], 'aut_group': None, 'aut_hash': 3650108502560808091, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 27648, 'aut_permdeg': 864, 'aut_perms': [4091756146311709459572496241626140018404246191989082324454760869570378311293316376774753436859614721641739836122855179869098279128307595241847302950691387688855721460442638092010779479009582868915544584649148009742947345360984254047039151711600162559416526381377380240449645091511480620045578806122404807524536938433539840587508606748075083379019390607016285476872805752752107040969933423155352146169385883460576321537491589519638305037005179013132262450620888965251989504591806821463480446178318998657193095551519712089747777143969846899919816743634332149453014575609722120839818137061279610989655072502585479331749493850865507517237554312709057394698186204269657770408055483775331675162527749243576340256429516459500810791002723436762154822962206040822324350884325418949725667738045959217266839987174173984269548600884883098871063586381291895968295460547491999727696949847555132874308948383859133903224953218307424600235092631017048606046862431749617158885533552612726532664117761724265145233955141329120538974520675466933598814302768919577939262486897669423246892371976072660687630461007179352871567656527738137807623623035475313187367153559109649925214859324927187255691916262114362928922414436905236751619532767804612286976256409903694426790712315699849952661432959843800198165487310510224507652340226744825609725831213616680448000086239526847755450311768095028746048719075575263395598535484439854427015156925998926821254730092529394815083292745161432335740328601776866846905039875233546683832416265261912261508509985953701389489985670332843393909411902769469228537020603267801600831547352381986053837812241306686828264905934925969430409087196326750704892787298727195715002238690093091634714981963305774518511855487533148866317826159631785546260796035854225151611480290976820801620196070786938566027523731295585653076929019105782830949450764498252051452822363282725220010888967511411427492090282829695648716006907093455612313777378876288562497094507994944806693246171374208855537644508023086505062045571579885695152204819334313993651400330901094246096475925982971944840028846314883850482662293018751711728255635140717742116464485175872420706770996540804642469, 859059072283926818850964984194062013682954143541622781417362638493166640587718174716575788706486730216836383418914778905933597903835969462657481942383764089603600930518320811762192789031797823506663641378049102046199092439486653709636149677662728316794673738971203230717884237132612982658875499797859703750015884810872690952145689710794182763817661784452926341210014692677180174666137198536143408969407824359653447392717735726341613651151339712798520090360336551058667358701542670636099182481260104173120819038490268384383374898868261383823717078273009561541932990368454165348440855781188945242266569017660581789933501677169808346368857316896017026898685815791784583593108422629057099599063238550974228445115223378722845202471150343440773984314463544051393914076779743253325266240716263636687904248301580873499836519828756516618238508849363572819775311616089647537216653610989331812618267476053238029323733950089639562475551440755851700740915899894886045156965950621796344557153681470487589628649263423125065080686495263263392372172373632009641225296226680697459578115779347714498040889196850330997344514276014313207981004717792069460199688541948715003194416229570885350496337733748847657557824019745191125716548438370204793852900224482725496047837444661473646034957562018555736753140441208855298263217565503796048784955207262869346169295168270926424993808522690792461481776243128765079775503870205617570023539282508616448685177576351166861504859244529857944625722555134983365761148980375349258808612908174605573380071803034640238544081267183371569298423103947245042685925362600769538215107123833402150366694094580096158231169743341309343024688670242837039855208428507622472269960613271444165013773572253605039209729657320314005884560032216679395289496205917523712467908534395690088773350719796253525381368071925362952156123235114108562126359804758306218029760448068667008071901241985276174865124934456236195058041763604633944317731497988292555308997709887955158590009240732123610985851042259826311142465178464842030334259989229368575470062760428429310914108223392156332417848202912509789790558602403762585977937348227523967158561485189321240786393778499659886608, 3498594809396295983675356174777339842944946684821884411816577644719665714243282240224761824935645210607736015320528760399721609044438655689025014637678131909410273571703791663199526717620964620238505278903276382992495502818128556078278478215359282133374137964602499479488612528182248050501646009090713254098946944256834194490492957546955132962930066679883848150028001287686583819693258453575600451434899404697045674956553232708949477628192505509245908215254231787368188702315950176292091278695209151661669601746455589291081140035954716645113544977530232997892831411650511745781353981423190438878115380776710546634718579601984993994248513823126434788761911726758470685664969590536391733222418246050333172717221385657029146349100063681502614858171520207448044689499407839375739015429570560943190047842607378702809257479290709133330277234124111473826141245676875570432192811218387755558620169992530750047848880808945105638364448447323512293907378134483901315616855380512075515643275783257144079388450621368014759579455564836336515342043257891251641172928931789330740069589621103538781989280986510499911196055766167015500328943377498579625823579787075251790089359429044370907318901777572775764583848702147927908189257125856131686647288914951340855286102967358133383843876934778432398590326792703382134785549716448393862278191234866841915306882373163841926469989101896329473685441781547914350156700144135273090032630366433356576450863393308786752080156892653269524062696518475883450692438290150343507716605723230721152713166928684335907504987428907650091358306630720959275069030330129549573106549196568156336756074088661013463903771573876776581910349012543513638263016388306355923732751019462610532152776519187288393755201736787044645843903905610246800407847803635638486385718677670738079757222787268507705449017861325512825269119252797136462698003189595824385459508064887013833268398394679721474588023794183471866677605644043728716452396104919192431796140590262744652860118636954894861721538262740957644705617953958652422003612624227130227783013039443153313150641444723057572593899204171916325793366462839380530422171307940720552685707143444043073382346202436175905243, 3501286904047074663498965430417161578571232301313661824429672211238437280096102798449320939476832618319979646215427381139319512791015197724650126020073524865279803435806040490083745498363881105127776149017495717005901332687771052691440308758147163922652545071380948300140022337664730357145262056982609117517331138131172597999050855972539983421619525506569486285655436443749419969809140068738383929236838417991489508731105656545288381356230608699688335639814415948629810837305877883812181823843839909154405800447969454434154952537391031687670575615212332650526056338027929472413016461588461391227527744641931048841588044598321628310559846939800403333526582476071882239490081323799320737226253462578953843069127898482859646784151102582291569305418517430898197254048470809655327620601053439647742985127082488419059647638957649916940628804946340675130450542060411847350893285003680396947075315119433055309674855480022896202333205010669868364905389121235845216284325933913304457797993142183628496630587390532362528505253188847954127749387549389140848530649509198185616915865164779794495866349121026996233693545235576626332287717984952042710343819358874578568741979294143420965907475090403046699040177049413409805462985692785798282666316083851929520861841988418044129405329205341766508549964863879106300208577551880881195168145281054052772108588251036921107706329320847845116623541671762898533225609141544435044927032857943326819522684099064275124374063857437151327526793646617020240960141560258638956231813479856920648719136760200915866110564753790490655332043010123446362609495019151343265958042177877673309997830979075022636088275985534554527413942038205486527061945085433783357198778282392146209136337570511331847945236300031876901619961139087219018044537145332089083306884304931779076822541477376518573138765770327878479465687977317149268524930917572367743556519970589158161072721038792700700430037651021701920295578530946651807383019152696220273044229590547771498441732440820668428967946244525458622367434245957847819468462992094164910808007357795860392405404224166318234858303001383128166972156359308784121184830898065853281762270765149435964280266471907367600496, 5150852002108060065796239298236693619035148704098487787747057759636370931398768162589253260754340966539499770664855195882917866376472868690374891340346344680644370677460553451828269824648685629736685855620993466738416460716902392571094732341752989038151508871084266312015000731813747871736637673065348505199703388638243528520503304287258876140959797411124442955201877727849773413186439585036636818764137500692860687249605291241867953409286657401947895057243421420910673669227133997561272105453156792918315116152787003858854383467266416484907998160082908529938621615518858511660718688319645961924795397723279764992657186074847935720454597353483486411489898509513662860815349421204972775207475763789494362008719119245484520272655905228630681563839213471910408042569465981941022383154609644793652219990291089902271006881236331778453077951835667570962976020071995546378460730834075624912019966963373971427297441835722719494237640969105884349536286822228728121295996901888156759589355717827107773324956247887706099405821643835944269409888305715987161446680424496359911740599605571005231513960078558862843380106901287765136956756782079651754351554831444269882886608311392103970152705999805845499901550487534646272021589961324419656917986047603270574118729070978113304652627256111460207006467560212284302463515424472358979200606199688183318533382310176753845072816087447085610638772131138478933667893920900476826771721328676947010290467971803264237142134115327839080265818355969898994220236399137961111557491296873785307220412891923259762301946973350458165575118005750926942216869650671836155671066769696273634237051835775373490300892205711318842425332569346500551215294996806175652199884600366341089379299234451699387952259791069563097226815389205538877995978644766113433091755396405460814161531413926993156042997493439023842961405125281598761203120901421155419581589323630189474768166257755727969239533153057864843346592008129206050536754628482766475021813448135315507287686067355443334959223575129966314716818620507199196636829224378070234193153875078032162069445238409342833497728679955932011402118231020808331198113981484912629649032377832419738500308852304671105081, 2446428992678253870691997288277697343193207931271056939869043919669392228289080455040776504518795386388597772782527348834800525884950086513538578581712715384428456901376123961062657867418168144023044819835703426694944869898921784521434019345155725863480423552648191658664135140948872709439733570887427294869162414525231897101624096206067298172896195756008180164042552423058756009137597216584643780117663030184250565864092730681954740866539944390983389769911685711463605051509946804252684962459749472359491090436111551665188127737505346359210255642548836050602899801063463375725513428671519844346993274186557190924097283483069586777998765612129486124762234343025838952940911596085612640164992649310835059986565383801063645496739920152135527770632635831651589368991468443802946101087421821998157550925061059219697655382715135106782160715851960156728794495214542123527510010291425707767648360140145285242419409331870255693660671687955932495169161207619405022893574478445494272234018427992609810270857880294029681513751074661468303484031096866944690299906999048764499528017483597007423928093313103846550720656562573342426960010187144983566929765086106540897078353597547182315275254043625904129353846841101828225799733436180601028256415045910828202682251373450993880916932567741223245988569836142872534698995229776325209895949266587565564701148024858560955859265854304634764074972212442163274895181788647364972325612341170927377140397168937306163791900982307186739109628352115707168026548699484230426052445638434541470945702747182972099172576720439969402147961766163270393406114994185026592698730263172204442523185995090587552283379076126039908338116378489837206547870870110148698927260200661854894830622004505160723472805494920688502024301657944934398332650227317416582742478584278770542149105820453950266365738098781914606413166024572820206879830156906859990405237075191301901032315902272569243246143489324438340032698862757578391346804610964544060238487920479612750943569886231279726839276872827668399357353096502854754858223745229724426609703901785043236367487925287602538238987829898404739193234603698487879975972492775329621806544160840264847682362458308103447492], 'aut_phi_ratio': 48.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 18, 1, 1], [3, 2, 1, 1], [3, 8, 1, 1], [3, 8, 2, 1], [4, 2, 1, 1], [4, 9, 2, 1], [6, 2, 1, 1], [6, 8, 1, 1], [6, 8, 2, 1], [6, 18, 2, 1], [8, 2, 2, 1], [8, 18, 2, 1], [8, 216, 4, 1], [12, 2, 2, 1], [12, 8, 2, 1], [12, 8, 4, 1], [12, 18, 2, 1], [16, 18, 4, 2], [24, 2, 4, 1], [24, 8, 4, 1], [24, 8, 8, 1], [24, 18, 4, 1], [48, 18, 8, 2]], 'aut_supersolvable': False, 'aut_tex': 'C_3^3.(C_2^3\\times C_8).C_2^4', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '4.2', 'autcent_hash': 2, 'autcent_nilpotent': True, 'autcent_order': 4, 'autcent_solvable': True, 'autcent_split': False, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^2', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 24, 'autcentquo_group': None, 'autcentquo_hash': 3032895660079443855, 'autcentquo_nilpotent': False, 'autcentquo_order': 6912, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': '(C_6\\times C_3:S_3).C_2^5.C_2', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 18, 1], [3, 2, 1], [3, 8, 3], [4, 2, 1], [4, 9, 2], [6, 2, 1], [6, 8, 3], [6, 18, 2], [8, 2, 2], [8, 18, 2], [8, 216, 4], [12, 2, 2], [12, 8, 6], [12, 18, 2], [16, 18, 8], [24, 2, 4], [24, 8, 12], [24, 18, 4], [48, 18, 16]], 'center_label': '2.1', 'center_order': 2, 'central_product': False, 'central_quotient': '864.2775', 'commutator_count': 1, 'commutator_label': '216.83', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '3.1', '3.1', '3.1'], 'composition_length': 9, 'conjugacy_classes_known': True, 'counter': 21218, 'cyclic': False, 'derived_length': 3, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 18, 1, 1], [3, 2, 1, 1], [3, 8, 1, 1], [3, 8, 2, 1], [4, 2, 1, 1], [4, 9, 2, 1], [6, 2, 1, 1], [6, 8, 1, 1], [6, 8, 2, 1], [6, 18, 2, 1], [8, 2, 2, 1], [8, 18, 2, 1], [8, 216, 2, 2], [12, 2, 2, 1], [12, 8, 2, 1], [12, 8, 4, 1], [12, 18, 2, 1], [16, 18, 4, 2], [24, 2, 4, 1], [24, 8, 4, 1], [24, 8, 8, 1], [24, 18, 4, 1], [48, 18, 8, 2]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 24, 'exponent': 48, 'exponents_of_order': [6, 3], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [[8, 0, 8]], 'familial': False, 'frattini_label': '8.1', 'frattini_quotient': '216.161', 'hash': 21218, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 24, 'inner_gen_orders': [4, 24, 3, 3], 'inner_gens': [[1, 92, 1152, 192], [105, 4, 960, 768], [769, 1540, 192, 576], [961, 388, 192, 576]], 'inner_hash': 2775, 'inner_nilpotent': False, 'inner_order': 864, 'inner_split': False, 'inner_tex': 'C_{12}.\\PSU(3,2)', 'inner_used': [1, 2, 3], 'irrC_degree': 8, 'irrQ_degree': 64, 'irrQ_dim': 64, 'irrR_degree': 16, 'irrep_stats': [[1, 8], [2, 46], [8, 24]], 'label': '1728.21218', 'linC_count': 8, 'linC_degree': 8, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 26, 'linQ_degree_count': 8, 'linQ_dim': 26, 'linQ_dim_count': 4, 'linR_count': 16, 'linR_degree': 12, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': True, 'name': 'C24.PSU(3,2)', 'ngens': 9, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 27, 'number_characteristic_subgroups': 33, 'number_conjugacy_classes': 78, 'number_divisions': 28, 'number_normal_subgroups': 35, 'number_subgroup_autclasses': 96, 'number_subgroup_classes': 110, 'number_subgroups': 1080, 'old_label': None, 'order': 1728, 'order_factorization_type': 33, 'order_stats': [[1, 1], [2, 19], [3, 26], [4, 20], [6, 62], [8, 904], [12, 88], [16, 144], [24, 176], [48, 288]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 4, 'outer_gen_orders': [2, 2, 2, 4], 'outer_gen_pows': [2, 62, 0, 0], 'outer_gens': [[3, 4, 1344, 1536], [13, 4, 1536, 384], [97, 68, 192, 576], [1, 148, 384, 1152]], 'outer_group': '32.45', 'outer_hash': 45, 'outer_nilpotent': True, 'outer_order': 32, 'outer_permdeg': 10, 'outer_perms': [362880, 5040, 127, 17], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^3\\times C_4', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 44, 'pgroup': 0, 'primary_abelian_invariants': [2, 4], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 8], [4, 4], [8, 4], [16, 4], [32, 3], [64, 1]], 'representations': {'PC': {'code': 170267132637103536499088113901274647096122064480609951290736418030821867015, 'gens': [1, 3, 8, 9], 'pres': [9, -2, -2, -2, -2, -2, -2, -3, -3, 3, 18, 874, 2486, 74, 6627, 102, 7924, 130, 8645, 158, 8070, 82951, 13840, 17305, 3490, 15560, 46673, 15578, 11699]}, 'Perm': {'d': 44, 'gens': [63530696628598201570781096717325290959048682064103039, 128198450541572545412363927007692466228141849361778993, 190047256893899025933828475689993878108158594542431419, 251905752768389553077998421763276207306896982625459200, 192857269154670800244305623804735857814281270516556800, 315167145942176238366502766547376930630444167524352000, 43545600, 57380, 94039]}}, 'schur_multiplier': [3], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 4], 'solvability_type': 11, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'C_{24}.\\PSU(3,2)', 'transitive_degree': 192, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '8.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 48, 'aut_gen_orders': [2, 2, 2, 4, 48], 'aut_gens': [[1, 4], [3, 100], [1, 68], [109, 188], [169, 44], [77, 4]], 'aut_group': '1536.230683028', 'aut_hash': 8779664174755546961, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 1536, 'aut_permdeg': 21, 'aut_perms': [1, 6, 17566011496111166646, 15000853136486968806, 10508941326955237230], 'aut_phi_ratio': 24.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 1], [3, 2, 1, 1], [4, 1, 2, 1], [4, 2, 1, 1], [6, 2, 1, 1], [6, 2, 2, 1], [8, 2, 2, 2], [8, 24, 4, 1], [12, 2, 2, 2], [16, 2, 4, 2], [24, 2, 4, 2], [48, 2, 8, 2]], 'aut_supersolvable': True, 'aut_tex': 'D_6\\times D_{16}:C_4', 'autcent_abelian': True, 'autcent_cyclic': False, 'autcent_exponent': 2, 'autcent_group': '8.5', 'autcent_hash': 5, 'autcent_nilpotent': True, 'autcent_order': 8, 'autcent_solvable': True, 'autcent_split': False, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^3', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 24, 'autcentquo_group': '192.1331', 'autcentquo_hash': 1331, 'autcentquo_nilpotent': False, 'autcentquo_order': 192, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'D_8:D_6', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 2, 1], [3, 2, 1], [4, 1, 2], [4, 2, 1], [6, 2, 3], [8, 2, 4], [8, 24, 4], [12, 2, 4], [16, 2, 8], [24, 2, 8], [48, 2, 16]], 'center_label': '4.1', 'center_order': 4, 'central_product': False, 'central_quotient': '48.7', 'commutator_count': 1, 'commutator_label': '24.2', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '3.1'], 'composition_length': 7, 'conjugacy_classes_known': True, 'counter': 65, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 2, 1, 1], [3, 2, 1, 1], [4, 1, 2, 1], [4, 2, 1, 1], [6, 2, 1, 1], [6, 2, 2, 1], [8, 2, 2, 2], [8, 24, 2, 2], [12, 2, 2, 2], [16, 2, 4, 2], [24, 2, 4, 2], [48, 2, 8, 2]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 6, 'exponent': 48, 'exponents_of_order': [6, 1], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [[2, 0, 16]], 'familial': False, 'frattini_label': '16.5', 'frattini_quotient': '12.4', 'hash': 65, 'hyperelementary': 2, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 24, 'inner_gen_orders': [2, 24], 'inner_gens': [[1, 92], [105, 4]], 'inner_hash': 7, 'inner_nilpotent': False, 'inner_order': 48, 'inner_split': False, 'inner_tex': 'D_{24}', 'inner_used': [1, 2], 'irrC_degree': 2, 'irrQ_degree': 32, 'irrQ_dim': 32, 'irrR_degree': 4, 'irrep_stats': [[1, 8], [2, 46]], 'label': '192.65', 'linC_count': 16, 'linC_degree': 2, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 18, 'linQ_degree_count': 4, 'linQ_dim': 18, 'linQ_dim_count': 2, 'linR_count': 8, 'linR_degree': 4, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'C48.C4', 'ngens': 7, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 19, 'number_characteristic_subgroups': 25, 'number_conjugacy_classes': 54, 'number_divisions': 20, 'number_normal_subgroups': 27, 'number_subgroup_autclasses': 34, 'number_subgroup_classes': 40, 'number_subgroups': 88, 'old_label': None, 'order': 192, 'order_factorization_type': 51, 'order_stats': [[1, 1], [2, 3], [3, 2], [4, 4], [6, 6], [8, 104], [12, 8], [16, 16], [24, 16], [48, 32]], 'outer_abelian': True, 'outer_cyclic': False, 'outer_equivalence': False, 'outer_exponent': 4, 'outer_gen_orders': [2, 2, 2, 4], 'outer_gen_pows': [0, 0, 60, 0], 'outer_gens': [[3, 4], [1, 28], [13, 4], [1, 148]], 'outer_group': '32.45', 'outer_hash': 45, 'outer_nilpotent': True, 'outer_order': 32, 'outer_permdeg': 10, 'outer_perms': [362880, 5040, 120, 17], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^3\\times C_4', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 35, 'pgroup': 0, 'primary_abelian_invariants': [2, 4], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 8], [4, 4], [8, 2], [16, 1], [32, 1]], 'representations': {'PC': {'code': 1181929598271331148122060380168065, 'gens': [1, 3], 'pres': [7, -2, -2, -2, -2, -2, -2, -3, 14, 680, 1934, 58, 5155, 80, 6164, 102, 6725, 124, 6278]}, 'GLFp': {'d': 2, 'p': 97, 'gens': [11543, 87616609, 60236443]}, 'Perm': {'d': 35, 'gens': [315020797296331646918615236130521602241, 645281784668631175692030067221227990880, 949420623217391539478097555887055738984, 1253671306282987188392545345199804029344, 1540370342827916708849695444873770235704, 1853275604215155380388220644227032279224, 3]}}, 'schur_multiplier': [], 'semidirect_product': False, 'simple': False, 'smith_abelian_invariants': [2, 4], 'solvability_type': 6, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'C_{48}.C_4', 'transitive_degree': 96, 'wreath_data': None, 'wreath_product': False}