Properties

Label 1728.21218.192.a1.a1
Order $ 3^{2} $
Index $ 2^{6} \cdot 3 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^2$
Order: \(9\)\(\medspace = 3^{2} \)
Index: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(3\)
Generators: $c, d$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.

Ambient group ($G$) information

Description: $C_{24}.\PSU(3,2)$
Order: \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Derived length:$3$

The ambient group is nonabelian and monomial (hence solvable).

Quotient group ($Q$) structure

Description: $C_{48}.C_4$
Order: \(192\)\(\medspace = 2^{6} \cdot 3 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Automorphism Group: $D_6\times D_{16}:C_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \)
Outer Automorphisms: $C_2^3\times C_4$, of order \(32\)\(\medspace = 2^{5} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3^3.(C_2^3\times C_8).C_2^4$
$\operatorname{Aut}(H)$ $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$\SD_{16}$, of order \(16\)\(\medspace = 2^{4} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(1728\)\(\medspace = 2^{6} \cdot 3^{3} \)
$W$$Q_8$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_3^2\times C_{24}$
Normalizer:$C_{24}.\PSU(3,2)$
Complements:$C_{48}.C_4$
Minimal over-subgroups:$C_3^3$$C_3\times C_6$$C_3:S_3$
Maximal under-subgroups:$C_3$

Other information

Möbius function$0$
Projective image$C_{24}.\PSU(3,2)$