Subgroup ($H$) information
Description: | $C_3^2$ |
Order: | \(9\)\(\medspace = 3^{2} \) |
Index: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Exponent: | \(3\) |
Generators: |
$c, d$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), a semidirect factor, abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $C_{24}.\PSU(3,2)$ |
Order: | \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Derived length: | $3$ |
The ambient group is nonabelian and monomial (hence solvable).
Quotient group ($Q$) structure
Description: | $C_{48}.C_4$ |
Order: | \(192\)\(\medspace = 2^{6} \cdot 3 \) |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Automorphism Group: | $D_6\times D_{16}:C_4$, of order \(1536\)\(\medspace = 2^{9} \cdot 3 \) |
Outer Automorphisms: | $C_2^3\times C_4$, of order \(32\)\(\medspace = 2^{5} \) |
Nilpotency class: | $-1$ |
Derived length: | $2$ |
The quotient is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3^3.(C_2^3\times C_8).C_2^4$ |
$\operatorname{Aut}(H)$ | $\GL(2,3)$, of order \(48\)\(\medspace = 2^{4} \cdot 3 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $\SD_{16}$, of order \(16\)\(\medspace = 2^{4} \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(1728\)\(\medspace = 2^{6} \cdot 3^{3} \) |
$W$ | $Q_8$, of order \(8\)\(\medspace = 2^{3} \) |
Related subgroups
Centralizer: | $C_3^2\times C_{24}$ | ||
Normalizer: | $C_{24}.\PSU(3,2)$ | ||
Complements: | $C_{48}.C_4$ | ||
Minimal over-subgroups: | $C_3^3$ | $C_3\times C_6$ | $C_3:S_3$ |
Maximal under-subgroups: | $C_3$ |
Other information
Möbius function | $0$ |
Projective image | $C_{24}.\PSU(3,2)$ |