-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'ambient': '145200.l', 'ambient_counter': 12, 'ambient_order': 145200, 'ambient_tex': 'C_{220}:F_{11}:S_3', 'central': False, 'central_factor': False, 'centralizer_order': 100, 'characteristic': False, 'core_order': 2, 'counter': 289, 'cyclic': False, 'direct': None, 'hall': 0, 'label': '145200.l.12100.a1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': None, 'minimal': False, 'minimal_normal': False, 'nilpotent': False, 'normal': False, 'old_label': '12100.a1', 'outer_equivalence': True, 'perfect': False, 'proper': True, 'quotient': None, 'quotient_Agroup': None, 'quotient_abelian': None, 'quotient_cyclic': None, 'quotient_hash': None, 'quotient_metabelian': None, 'quotient_nilpotent': None, 'quotient_order': 12100, 'quotient_simple': None, 'quotient_solvable': None, 'quotient_supersolvable': None, 'quotient_tex': None, 'simple': False, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '12.4', 'subgroup_hash': 4, 'subgroup_order': 12, 'subgroup_tex': 'D_6', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '145200.l', 'aut_centralizer_order': None, 'aut_label': '12100.a1', 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': '1452.b1', 'complements': None, 'conjugacy_class_count': 4, 'contained_in': ['100.a1', '2420.a1', '2420.b1', '6050.a1', '6050.b1', '6050.c1'], 'contains': ['24200.a1', '24200.b1', '36300.b1'], 'core': '72600.a1', 'coset_action_label': None, 'count': 484, 'diagramx': [4203, -1, 3534, -1], 'generators': [54155, 72600, 80900], 'label': '145200.l.12100.a1', 'mobius_quo': None, 'mobius_sub': -10, 'normal_closure': '50.c1', 'normal_contained_in': None, 'normal_contains': None, 'normalizer': '121.a1', 'old_label': '12100.a1', 'projective_image': '72600.s', 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '12100.a1', 'subgroup_fusion': None, 'weyl_group': '12.4'}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '4.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 2, 'aut_exponent': 6, 'aut_gen_orders': [2, 6], 'aut_gens': [[1, 2], [1, 10], [3, 2]], 'aut_group': '12.4', 'aut_hash': 4, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 12, 'aut_permdeg': 5, 'aut_perms': [6, 49], 'aut_phi_ratio': 3.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 3, 2, 1], [3, 2, 1, 1], [6, 2, 1, 1]], 'aut_supersolvable': True, 'aut_tex': 'D_6', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 2, 'autcent_group': '2.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 2, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 6, 'autcentquo_group': '6.1', 'autcentquo_hash': 1, 'autcentquo_nilpotent': False, 'autcentquo_order': 6, 'autcentquo_solvable': True, 'autcentquo_supersolvable': True, 'autcentquo_tex': 'S_3', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 3, 2], [3, 2, 1], [6, 2, 1]], 'center_label': '2.1', 'center_order': 2, 'central_product': True, 'central_quotient': '6.1', 'commutator_count': 1, 'commutator_label': '3.1', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '3.1'], 'composition_length': 3, 'conjugacy_classes_known': True, 'counter': 4, 'cyclic': False, 'derived_length': 2, 'dihedral': True, 'direct_factorization': [['2.1', 1], ['6.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 3, 1, 2], [3, 2, 1, 1], [6, 2, 1, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 3, 'exponent': 6, 'exponents_of_order': [2, 1], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [[2, 1, 1]], 'familial': True, 'frattini_label': '1.1', 'frattini_quotient': '12.4', 'hash': 4, 'hyperelementary': 2, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 6, 'inner_gen_orders': [2, 3], 'inner_gens': [[1, 10], [5, 2]], 'inner_hash': 1, 'inner_nilpotent': False, 'inner_order': 6, 'inner_split': True, 'inner_tex': 'S_3', 'inner_used': [1, 2], 'irrC_degree': 2, 'irrQ_degree': 2, 'irrQ_dim': 2, 'irrR_degree': 2, 'irrep_stats': [[1, 4], [2, 2]], 'label': '12.4', 'linC_count': 1, 'linC_degree': 2, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 2, 'linQ_degree_count': 1, 'linQ_dim': 2, 'linQ_dim_count': 1, 'linR_count': 1, 'linR_degree': 2, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': True, 'monomial': True, 'name': 'D6', 'ngens': 3, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 5, 'number_characteristic_subgroups': 5, 'number_conjugacy_classes': 6, 'number_divisions': 6, 'number_normal_subgroups': 7, 'number_subgroup_autclasses': 8, 'number_subgroup_classes': 10, 'number_subgroups': 16, 'old_label': None, 'order': 12, 'order_factorization_type': 22, 'order_stats': [[1, 1], [2, 7], [3, 2], [6, 2]], 'outer_abelian': True, 'outer_cyclic': True, 'outer_equivalence': False, 'outer_exponent': 2, 'outer_gen_orders': [2], 'outer_gen_pows': [0], 'outer_gens': [[7, 2]], 'outer_group': '2.1', 'outer_hash': 1, 'outer_nilpotent': True, 'outer_order': 2, 'outer_permdeg': 2, 'outer_perms': [1], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2', 'pc_rank': 2, 'perfect': False, 'permutation_degree': 5, 'pgroup': 0, 'primary_abelian_invariants': [2, 2], 'quasisimple': False, 'rank': 2, 'rational': True, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 2]], 'representations': {'PC': {'code': 43377, 'gens': [1, 2], 'pres': [3, -2, -2, -3, 61, 16, 74]}, 'GLZ': {'b': 3, 'd': 2, 'gens': [17, 35]}, 'GLFp': {'d': 2, 'p': 3, 'gens': [31, 55, 56]}, 'Perm': {'d': 5, 'gens': [6, 1, 30]}}, 'schur_multiplier': [2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2], 'solvability_type': 6, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': True, 'sylow_subgroups_known': True, 'tex_name': 'D_6', 'transitive_degree': 6, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '200.52', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 660, 'aut_gen_orders': [20, 20, 60, 60, 20, 60, 10], 'aut_gens': [[1, 10, 300, 3300], [125683, 61010, 93000, 29700], [44615, 121692, 81600, 10500], [39329, 141438, 80100, 30300], [136097, 127156, 120600, 123000], [30247, 66556, 1500, 16500], [51597, 106156, 27600, 131100], [110733, 82492, 26700, 143700]], 'aut_group': None, 'aut_hash': 5227947440930426124, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 4646400, 'aut_permdeg': 869, 'aut_perms': [144420535601813205295153004002724413561926063875047722519212618140900063227859131402518106365705057925232714560640411686585501487812417232739807599018561377741369395775286854266345232807759739034017535755118726697561822052117467174142156229008090918489172016854596134540622258749775911972880021138839544196477365789372143446420933201903132812938562207804346744190125600566678624470346849874741866759914892204210660894502229663008390720170686895031635907753627481329544239415659974450399309716287395050828860434151160245435060843644636664157631367311051747839098804504418058007633487998031086689971754326720140472775355542320955009258805804013819342892351701865705921181105225350343937545781712763881357413579701577624249751133783778402283530824358196808331752983505577830299940075403138849592125797714978303660853861742537887218612203975771634219805276268736784567564344185444118775309934097352914193972509987731498424457194363761034970893135184986702532666873080058593759270426339132905883408817902745142965864120287103230728387525788166655297441060626842640263695941512532985325943484637511935530469082761034369076801671532838198315994377906536590350601782137716830997359830065444804859089366464602966018619002211900353120341123260308289805847875233681147156144150360736791021972100202045650880871016506893235631002845926468204287250911890762560319850663098174026116015546365911874353079926165330427453219089906335813480690565908606281733876908205199254627426940862272143021492934237752236879788834931367218497960596589462207930913879132130477860575905252596419182630496342042686730113979015301505335686993790430987453439974482579850845944665201840032904453670394013668023996168927276688535340177878798663633076466551955816465904100762436839260248763073124685195483284302444573578626627286580288348366042053678610842183557074710511489034133937178023175812722048736288052089438778750867192235585466199059090954072399591249222055076914883081958718037511970911594899564816522765885958142975427544535176119375592941627208429291729540523226217261244056532828332670375414709935165909652246042626320602196125921020658107412273348041851331424809384128712573783241351963798666451338239, 2219201725965947065393171329661674529856762515549710372317905443407402178265185434978369901845024568483086757882410951922888841648410922742742825995160479940406850950436091436120737996201588103643628620913216515724213323491373005843927256758178978539702874848838479314852704864577700495311232329493380963143432702948965821100337695746860296376805810858077680181437690902240519910380825952583117288984852958827665303106016123112830324346722153681399513858396683904579535641762956195130604012507109123731150605334847826621851883520079710098097328202440025357797961005271745551971235375017875237693663814560745425631171726847091497606995571384804864698790517347799828673394042920237673574801616558479392307364631663781156009667199675042938102935817189158520935618756199970414598016832492904962604739218440220763752077837901724425513856672105825378274228804390869366225072232148277647646651770710700430559683824366131120409004853260233766330998537682749457994538514906569080677733875213598735872124801921502502036976250696626859411375658272398526647806981084275081970780226556135534363290942099078077120026939719693820336537569514236248251676456108428970477448798039432883670343848195873123936211461195610386189605615389093886489741277585823014288874960647112098443000349596149800329724892439266349627195213709049182541160346932015090621495074699035730480086242189759482029518702743856368833501999084070361764262172407364939926502313752677817072693203888649982675552483260375290958173558289522836683463224495096446650617306745183571617044380257488193264592996150078023597434380624772228657261055854274902845141860309680256424889290567326954120497825581870152491925044014160407621661892808042878145488047258096421450201553212495544599423497514464147795833699598169894176128118137352199895224222830949733981815172012406371338053504559432183120279893428737402760758014615873014932395327599264388646768546098835702418026131174962700356334528760702875223598684902283427963120930849016791514566315990115376338340224562550466730385829093761178765667900848479980062043975757062155369638932894386135767720259875221353320165917882824794972468435050088405706447605318071520131715515212182550725, 947153971041737676150724257766473640260194397464481931287068467146570177627434113048991202049364109076302760474802613854514552575423200397625604155126264380747982215560306521626472767566447407384826557477805100675014195729868294384398705843516748960660961134511184682681159466763664518794333678334275991587659231502183241026276878817201633270900715166814704631814727837087172114725703381290885985711137644739668297694187662112765271557920725656148963305624350373695027637347876574605975106915808490471433810307212810727796001637381568918117604464733441028982210533345616814387121056215022286264215021465298309438625203710811185665643146109282890695737738153969592575975197717445514131084464947153167370220774891522715612711435213609043449891223276127407593680991312029802894858784397191302338573634896915216886728170268796186445479776229999174526332531226902995352458200596773459349207240091100124099092491157442366364397585180054102319939881391590323458481794559989999884174258170243917397722057373485713718462469483506434802931024457383706066190504088615874407367469076189962287306437321414313411611026836427416063654951258093930532996432861609988473976907922579345354036386557447440410376462447814056408419118672355638957613506727844430282587795801190022812171007393969327493751946891666780976678000370368716720700597612919538481169162865536337154593974013719205551073653468226740643505363200630717211950503091767427846777323780797616758291529167943246889666914201292294332018390337946249516712804811614972617276581277045614342068831683041309208723013161234318821408373344656604842228126690431762542009958569517476929092996457751929790745972993819304624009953315853324545840582190536969220341686476804130376638634286968838381748415383187194617458283530553716920347787135703152849769915073360126296115696200671632834139149745071297023351961443621687072390624501295874598047450312219395938781678013330512131690302741669078931833218058695263319007497782733748421111808298900623220572608016400084452008528888028350751045486961570880919809234635065373655989287349422090346335375216879050181468193858655235117951741792568921036214317302527901624029844337480848700603085090466212048, 172497830870769895633265425719013016431889521107955403631274723378835644846599399654287990836780122619593450102890237116797313686350993342446132116162732888441480971791206683535038558775661149470454617017173672899589011614226640497849025876381734317046903382820135168558768436452359031629810136669957107936224226710009507478567672634822314361948952343055923535399591142496233675424103254169820311141074740802592573036313954996923306214438209661907125360896322306225996304372373039840241898461165983304769598746799279200150299712531709970404674036823604618426533473274945260169622619846171964739511157304395375406861024197092387112975299750883144046046663921062853378662619174587635427078104247974874379532262225596699010414612384738445444083418125071008060524662403377533078458909629854277065721510611331826609831415837311779538999257689185128700066930064120892621666746835897907305007426270658780040363842521445480088490614465463827942077246990256905408649932597382776317093641327367216627991373680873488029920020929033417728895011061194028283640330619437431158970446526598967317882696855126265398754647880879346247046489110303899620111611128709660140957355738057219988120470223398189202626757187961746299030398497696460462239058377338943156512376357613506608279213517636015028181563266935396453645973096317296807825511764707382426356868446600422223462099229079719254442543786778338718877298147824892915172303768975110571236336629475202796419942262451074260144590380358830374275712700454719946542699188768152418172685436372982449841335145837798268206430403422556698170826804211183730563614800578690039047396332417666908911705828709441856705894934131875684140515956455696369949186528096509995330317868552829972508940031725304634757655455246192621892017135725029832688334489550126276731857502870115488993524473864091549303444899316903975692836926870129337947782075878358945640211385437088595439056525341300465248544340516908806330382186821317153071337780889053530726563612552769477602365222664528860927697197777404057467195629519286374719315222637504939158649053461962354116342283796288762272328268610871711144691272549398443373380689419199065448971763807461476484545901210141112, 563982215718337676466607029505346112686052583867267078711029903716628628091704836443683126550300551937055389297982001640849215764168800107639272825632656912664011028255293371957968085851760224159725689927656442024860265495349659958424374695526449075521490080194064654558268802147884589500066317047464878833804849800814929405793883375609234524199337009214523623760589944477141979260065174197011950167514223112181784663206500612596421555320968098539876109921501900208514881721653645591066087984136759356670726830168193824593428640402661366451000144356009629037197218285492035099017676828070981048334711020299900362375742656815257167138689546725825190352209410642153623626044129126774951027420676479943344641287421571389434733688238138034835317338850680764526763523566388514687683989962944718963954441198850105301168439738665203573876542083453077095996021127489112353890936403751519322775765343759532856997004097295732015894882480925339558175812248206669958670914732843032790630560518369935339128658878417630116427322961005438308287910216844676393617641084788002399143881114672580351254468523659041368811259386316090360509308348230511690827214945210707447499781330392922981826565887357905509883183110372934216251717401217057066776380948701756751965094050564027886110507897010480634080620762787222475162673319230225904094098812893129689823272297020240639832268727903659500290559538795672853658061078175572082429632550014732478378806436568087175903770918497640724018849478745317223988540702621448994008884883903107080236581245402628145290096756555705672698274249028306526095861981652953240881120511426133850760181944564766175313008500720553998558464632983687890361946303952054438159977479201890717695667491867066114176124566550019848177733135621025423695641027090719370011030098654530231641736182421749695424346406671199077559238398682036680972605735980549287890657848302881217449835338700479613895469162390734684337743941037757875989154846509396037118211542218457472720708554403118474477519918855617368021913535970853256193004325458301914059776333438678945493564945694565350776533297418844365103501911319002308046223122777662758051676016084636089559379947760308266998105735881995654, 1536670568642252288321052951177399098565543198906792828847112428940548557157691255060475337933060224683976075153998097705874206979145725526327899908505713198617708162392726461556829074468804260671957100713151941394098541076262453731244882767421369901425788353094248799563546760322535737079311403843575756423337718282679944071057693178213391745047166683064264180168332638304272132172138735496904260102994800190362791181706996567350414126037079467153689247597402635828200255883473242733184735051387339197635544065536910607032644911604229406840860562646996885190264363440334828846316898876481089157742235875455501984207617691536997091943392341203781804719459893842293321395497169928010283231172545240864470882227696051485135655680573214283894804449644365466272438528477851406186464557058839735312953952333876978081938181663031368061529880632350527682158279486022044172197390677835304479526273995580374314376044383276433434950028130464777369332982772320283031376901426258343030777907337983312691058500931390357043098358008386689323484491856517420116467996255959116381986435062185196945671242677949721735704443169986526694467711863690609989474618099310674702062755415144922679226569501638467402118229054680192330126888300173018905049502313202413289228480038456899440259113864920284408591084555544911702668509703214375970856315113271670140562378789113036652356313933453845424330008035344398259781446013311545684915406098260484481562126160145937374409520299942154158843823473235210625128802758264398816608420098518770685480194203345604226318281169620597884132188643181247790109460135840564878714110153517438774342969669888564345091616007171617118475072011012916444545730999850776359107075217012143743340243517546022859595083300111550609023567170519830194170008702670142349992210271904792668757710415609727127937170587301755928849902526429732138736661331336160904260387600083719003291175662998426166763548955631525915663505986425869157908674437297760169769796091469758286536226999542333847319002843236594995444837915203346283560268191980073322908955633150395987829802348328025575360534728517295253879090699720073910057405542536730737889704497461113199710623593482594326744837975829252775, 778792037550558390609274854625164556200550567967325647292244305177632879757415125866443991839383287423612935498760101433106627050451317380224701862316779788907433958466951540779729400896528676382971073093419614530954548262493175687159987018138285125283006957790492039955842044689558243237693236232972210488995260430382301690108674366082419465174459326851202734231030451756087050210459541418659556706349387045496292227223026794429648215139452527257996280169444923000192305980896510073620572776731955506126828453927281871981946555677275895293724706781050038855167769512930958575681491241356944033833742753975563583069679051191688612446021069442023955826838861332397271665654589311898322233108735191063422505178013917075080576063348049916846170831125807105080531902062354738439549396732553546279941713677003057411660486897801521427745894793501295867853362069431732768847666594720465295913465781183037249610533392071003916287449559329485229031067809171831184231016736245160081162400657796783881852284738281244461176280531598670437043367317215717270593175505621103270451844520908459505140617611270164006895328112753111793007202485057440051297574880977177206227920000652781242745949846265020158555671746708224872185794005526905109043961288020842210533490483059248744025661779457564468838707558510806397724118778634672395026385214792348049262216703169634244499221834669830768204674329384404684239443439561737637293866440278121985184326833256809889961686142921460159059470684896070978603475803785930706327085465977918201004387321122179611176515738524310000540728019110566786631137234007430531824640825510675564791506557978207837711705712375446029315599924078507844869107496489893758955913734660486349894066758086794987049531466592916964926662800131610640741375823255841861295153846361329081649130147535823530841383583457350502817961876551087612667143909945814513602314893075673530257176473245130113643056692496365267799782752986244916047027958659144573543523685622199139468749273042623681501022376269277760177525263986493201142131450416936033293588632874519511278143597552440475154855600367182907682867994227583296154003930511133132489239562926478823236054348977612061367200103875023770], 'aut_phi_ratio': 132.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 66, 4, 1], [2, 121, 2, 1], [3, 242, 1, 1], [4, 2, 1, 1], [4, 242, 1, 1], [5, 1, 4, 1], [5, 121, 5, 4], [6, 242, 1, 1], [6, 242, 2, 1], [10, 1, 4, 1], [10, 66, 16, 1], [10, 121, 5, 4], [10, 121, 8, 1], [10, 121, 10, 4], [10, 726, 20, 4], [11, 30, 2, 1], [11, 60, 1, 1], [12, 242, 2, 2], [15, 242, 4, 1], [15, 242, 5, 4], [20, 2, 4, 1], [20, 242, 4, 1], [20, 242, 5, 8], [22, 30, 2, 1], [22, 60, 1, 1], [22, 660, 4, 1], [30, 242, 4, 1], [30, 242, 5, 4], [30, 242, 8, 1], [30, 242, 10, 4], [44, 60, 2, 2], [55, 30, 8, 1], [55, 60, 4, 1], [60, 242, 8, 2], [60, 242, 10, 8], [110, 30, 8, 1], [110, 60, 4, 1], [110, 660, 16, 1], [220, 60, 8, 2]], 'aut_supersolvable': False, 'aut_tex': 'C_{11}^2.C_{30}.C_{10}.C_2^6.C_2', 'autcent_abelian': False, 'autcent_cyclic': False, 'autcent_exponent': 20, 'autcent_group': '160.236', 'autcent_hash': 236, 'autcent_nilpotent': False, 'autcent_order': 160, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2^3\\times F_5', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 660, 'autcentquo_group': None, 'autcentquo_hash': 9201191957465338480, 'autcentquo_nilpotent': False, 'autcentquo_order': 29040, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'C_{11}^2.C_{30}.C_2^3', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 66, 4], [2, 121, 2], [3, 242, 1], [4, 2, 1], [4, 242, 1], [5, 1, 4], [5, 121, 20], [6, 242, 3], [10, 1, 4], [10, 66, 16], [10, 121, 68], [10, 726, 80], [11, 30, 2], [11, 60, 1], [12, 242, 4], [15, 242, 24], [20, 2, 4], [20, 242, 44], [22, 30, 2], [22, 60, 1], [22, 660, 4], [30, 242, 72], [44, 60, 4], [55, 30, 8], [55, 60, 4], [60, 242, 96], [110, 30, 8], [110, 60, 4], [110, 660, 16], [220, 60, 16]], 'center_label': '10.2', 'center_order': 10, 'central_product': True, 'central_quotient': '14520.bk', 'commutator_count': 1, 'commutator_label': '726.7', 'complements_known': True, 'complete': False, 'complex_characters_known': False, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '3.1', '5.1', '5.1', '11.1', '11.1'], 'composition_length': 9, 'conjugacy_classes_known': True, 'counter': 12, 'cyclic': False, 'derived_length': 3, 'dihedral': False, 'direct_factorization': [['29040.v', 1], ['5.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 66, 1, 4], [2, 121, 1, 2], [3, 242, 1, 1], [4, 2, 1, 1], [4, 242, 1, 1], [5, 1, 4, 1], [5, 121, 4, 5], [6, 242, 1, 3], [10, 1, 4, 1], [10, 66, 4, 4], [10, 121, 4, 17], [10, 726, 4, 20], [11, 30, 1, 2], [11, 60, 1, 1], [12, 242, 2, 2], [15, 242, 4, 6], [20, 2, 4, 1], [20, 242, 4, 11], [22, 30, 1, 2], [22, 60, 1, 1], [22, 660, 1, 4], [30, 242, 4, 18], [44, 60, 1, 2], [44, 60, 2, 1], [55, 30, 4, 2], [55, 60, 4, 1], [60, 242, 8, 12], [110, 30, 4, 2], [110, 60, 4, 1], [110, 660, 4, 4], [220, 60, 4, 2], [220, 60, 8, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 182988288, 'exponent': 660, 'exponents_of_order': [4, 2, 2, 1], 'factors_of_aut_order': [2, 3, 5, 11], 'factors_of_order': [2, 3, 5, 11], 'faithful_reps': [[60, 0, 16]], 'familial': False, 'frattini_label': '2.1', 'frattini_quotient': '72600.s', 'hash': 5524277664530726842, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 330, 'inner_gen_orders': [10, 30, 11, 22], 'inner_gens': [[1, 81710, 120900, 51600], [40401, 10, 133500, 124200], [27901, 15310, 300, 3300], [100201, 27610, 300, 3300]], 'inner_hash': 3901236506553590707, 'inner_nilpotent': False, 'inner_order': 14520, 'inner_split': False, 'inner_tex': 'C_{11}^2:(C_{10}\\times D_6)', 'inner_used': [1, 2, 4], 'irrC_degree': 60, 'irrQ_degree': 240, 'irrQ_dim': 240, 'irrR_degree': None, 'irrep_stats': [[1, 200], [2, 250], [30, 40], [60, 30]], 'label': '145200.l', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': None, 'name': 'C220:F11:S3', 'ngens': 9, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 80, 'number_characteristic_subgroups': 45, 'number_conjugacy_classes': 520, 'number_divisions': 138, 'number_normal_subgroups': 222, 'number_subgroup_autclasses': 320, 'number_subgroup_classes': 1360, 'number_subgroups': 132208, 'old_label': None, 'order': 145200, 'order_factorization_type': 321, 'order_stats': [[1, 1], [2, 507], [3, 242], [4, 244], [5, 2424], [6, 726], [10, 67368], [11, 120], [12, 968], [15, 5808], [20, 10656], [22, 2760], [30, 17424], [44, 240], [55, 480], [60, 23232], [110, 11040], [220, 960]], 'outer_abelian': False, 'outer_cyclic': False, 'outer_equivalence': True, 'outer_exponent': 20, 'outer_gen_orders': [2, 2, 2, 4, 10], 'outer_gen_pows': [92520, 0, 92520, 0, 0], 'outer_gens': [[14101, 28010, 27600, 96900], [120301, 114010, 3000, 69300], [105751, 107210, 15000, 17400], [42065, 134892, 3000, 69300], [92015, 88974, 106800, 96300]], 'outer_group': '320.1638', 'outer_hash': 1638, 'outer_nilpotent': False, 'outer_order': 320, 'outer_permdeg': 13, 'outer_perms': [5167, 11536, 16, 43913640, 1444625303], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2^4\\times F_5', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 42, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2, 5, 5], 'quasisimple': False, 'rank': 3, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 8], [2, 6], [4, 50], [8, 36], [16, 12], [30, 8], [60, 4], [120, 9], [240, 4], [480, 1]], 'representations': {'PC': {'code': '10172080363948937544176809577114425343036235643051253766166816746862688859272058678959419115053709749632695725614451783512940150345843001215447912414805695066686806294221030139009', 'gens': [1, 3, 6, 7], 'pres': [9, 2, 5, 2, 3, 5, 11, 2, 2, 11, 18, 2206172, 214796, 74, 51123, 1690572, 138, 1285204, 2093863, 6528605, 32414, 720923, 77792, 2471, 3250806, 3846165, 782484, 225888, 31227, 186, 7192807, 3564016, 719305, 504394, 71323, 214, 4422608, 2138417, 442286, 546785, 160424]}, 'GLFp': {'d': 4, 'p': 11, 'gens': [12531822321003912, 30551766872799773, 16267516240797404, 44332910602637236, 10522401710269773, 5063783017457019, 3352440040187918, 33418192856010432, 4190593668098319]}, 'Perm': {'d': 42, 'gens': [33, 4269122717314680267192180673103808913186964090944, 90753, 38435947295107606330666132746755107316813124230464, 72786475703563735937732166174855939129277413619290, 101381843496471307778764776351008377898253870393664, 137139285381337746165596084963912371070587739361216, 6697983241494594593294770090912237850027561011200, 174838111355488660326455349895823905948142837493840]}}, 'schur_multiplier': [2, 2, 10], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 10, 10], 'solvability_type': 17, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'C_{220}:F_{11}:S_3', 'transitive_degree': 660, 'wreath_data': None, 'wreath_product': False}