Properties

Label 145200.l.12100.a1
Order $ 2^{2} \cdot 3 $
Index $ 2^{2} \cdot 5^{2} \cdot 11^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$D_6$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Index: \(12100\)\(\medspace = 2^{2} \cdot 5^{2} \cdot 11^{2} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $a^{5}b^{15}c^{4}d^{16}, d^{22}, b^{20}c^{5}d^{24}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, an A-group, and rational.

Ambient group ($G$) information

Description: $C_{220}:F_{11}:S_3$
Order: \(145200\)\(\medspace = 2^{4} \cdot 3 \cdot 5^{2} \cdot 11^{2} \)
Exponent: \(660\)\(\medspace = 2^{2} \cdot 3 \cdot 5 \cdot 11 \)
Derived length:$3$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_{11}^2.C_{30}.C_{10}.C_2^6.C_2$
$\operatorname{Aut}(H)$ $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_{10}^2$
Normalizer:$C_{12}:C_{10}^2$
Normal closure:$C_{11}^2:D_{12}$
Core:$C_2$
Minimal over-subgroups:$C_{11}^2:D_6$$S_3\times C_{10}$$S_3\times C_{10}$$C_2\times D_6$$D_{12}$$D_{12}$
Maximal under-subgroups:$C_6$$S_3$$C_2^2$

Other information

Number of subgroups in this autjugacy class$484$
Number of conjugacy classes in this autjugacy class$4$
Möbius function$-10$
Projective image$C_{11}^2:(S_3\times C_{10}^2)$