-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'ambient': '1296.2922', 'ambient_counter': 2922, 'ambient_order': 1296, 'ambient_tex': 'C_6^2.S_3^2', 'central': False, 'central_factor': False, 'centralizer_order': 3, 'characteristic': False, 'core_order': 72, 'counter': 20, 'cyclic': False, 'direct': None, 'hall': 0, 'label': '1296.2922.6.k1.a1', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': False, 'minimal': False, 'minimal_normal': False, 'nilpotent': False, 'normal': False, 'old_label': '6.k1.a1', 'outer_equivalence': False, 'perfect': False, 'proper': True, 'quotient': None, 'quotient_Agroup': None, 'quotient_abelian': None, 'quotient_cyclic': None, 'quotient_hash': None, 'quotient_metabelian': None, 'quotient_nilpotent': None, 'quotient_order': 6, 'quotient_simple': None, 'quotient_solvable': None, 'quotient_supersolvable': None, 'quotient_tex': None, 'simple': False, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '216.98', 'subgroup_hash': 98, 'subgroup_order': 216, 'subgroup_tex': 'C_6^2.C_6', 'supersolvable': False, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '1296.2922', 'aut_centralizer_order': 3, 'aut_label': '6.k1', 'aut_quo_index': None, 'aut_stab_index': 2, 'aut_weyl_group': '216.166', 'aut_weyl_index': 6, 'centralizer': '432.a1.a1', 'complements': None, 'conjugacy_class_count': 1, 'contained_in': ['2.a1.a1'], 'contains': ['12.j1.a1', '18.a1.a1', '18.q1.a1', '24.e1.a1'], 'core': '18.a1.a1', 'coset_action_label': None, 'count': 2, 'diagramx': [3019, -1, 2914, -1, 1472, -1, 2955, -1], 'generators': [54, 432, 648, 86, 36, 756], 'label': '1296.2922.6.k1.a1', 'mobius_quo': None, 'mobius_sub': 0, 'normal_closure': '2.a1.a1', 'normal_contained_in': None, 'normal_contains': None, 'normalizer': '2.a1.a1', 'old_label': '6.k1.a1', 'projective_image': '1296.2922', 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '6.k1.a1', 'subgroup_fusion': None, 'weyl_group': '216.166'}
-
gps_groups • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '18.2', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 12, 'aut_gen_orders': [2, 2, 3, 3, 3, 2, 2], 'aut_gens': [[1, 18, 36], [1, 18, 180], [17, 108, 162], [13, 18, 36], [1, 108, 54], [145, 18, 36], [109, 18, 36], [127, 18, 36]], 'aut_group': '432.745', 'aut_hash': 745, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 432, 'aut_permdeg': 10, 'aut_perms': [450, 85680, 147, 80640, 148, 367920, 1174320], 'aut_phi_ratio': 6.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 3, 1, 2], [2, 9, 1, 1], [3, 1, 2, 1], [3, 2, 1, 1], [3, 2, 2, 1], [6, 3, 2, 2], [6, 6, 1, 1], [6, 6, 2, 1], [6, 9, 2, 1], [9, 4, 6, 1], [9, 8, 6, 1], [18, 12, 6, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_6^2:D_6', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 3, 'autcent_group': '3.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 3, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_3', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 12, 'autcentquo_group': '144.183', 'autcentquo_hash': 183, 'autcentquo_nilpotent': False, 'autcentquo_order': 144, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'S_3\\times S_4', 'cc_stats': [[1, 1, 1], [2, 3, 2], [2, 9, 1], [3, 1, 2], [3, 2, 3], [6, 3, 4], [6, 6, 3], [6, 9, 2], [9, 4, 6], [9, 8, 6], [18, 12, 6]], 'center_label': '3.1', 'center_order': 3, 'central_product': True, 'central_quotient': '72.44', 'commutator_count': 1, 'commutator_label': '12.5', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '3.1', '3.1', '3.1'], 'composition_length': 6, 'conjugacy_classes_known': True, 'counter': 98, 'cyclic': False, 'derived_length': 2, 'dihedral': False, 'direct_factorization': [['36.3', 1], ['6.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 3, 1, 2], [2, 9, 1, 1], [3, 1, 2, 1], [3, 2, 1, 1], [3, 2, 2, 1], [6, 3, 2, 2], [6, 6, 1, 1], [6, 6, 2, 1], [6, 9, 2, 1], [9, 4, 6, 1], [9, 8, 6, 1], [18, 12, 6, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 36, 'exponent': 18, 'exponents_of_order': [3, 3], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [[6, 0, 2]], 'familial': False, 'frattini_label': '3.1', 'frattini_quotient': '72.44', 'hash': 98, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 6, 'inner_gen_orders': [6, 2, 6], 'inner_gens': [[1, 126, 90], [109, 18, 36], [199, 18, 36]], 'inner_hash': 44, 'inner_nilpotent': False, 'inner_order': 72, 'inner_split': True, 'inner_tex': 'S_3\\times A_4', 'inner_used': [1, 2, 3], 'irrC_degree': 6, 'irrQ_degree': 12, 'irrQ_dim': 12, 'irrR_degree': 12, 'irrep_stats': [[1, 18], [2, 9], [3, 6], [6, 3]], 'label': '216.98', 'linC_count': 48, 'linC_degree': 5, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 8, 'linQ_degree_count': 2, 'linQ_dim': 8, 'linQ_dim_count': 2, 'linR_count': 18, 'linR_degree': 7, 'maximal_subgroups_known': True, 'metabelian': True, 'metacyclic': False, 'monomial': True, 'name': 'C6^2.C6', 'ngens': 6, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 15, 'number_characteristic_subgroups': 15, 'number_conjugacy_classes': 36, 'number_divisions': 15, 'number_normal_subgroups': 15, 'number_subgroup_autclasses': 45, 'number_subgroup_classes': 45, 'number_subgroups': 158, 'old_label': None, 'order': 216, 'order_factorization_type': 33, 'order_stats': [[1, 1], [2, 15], [3, 8], [6, 48], [9, 72], [18, 72]], 'outer_abelian': True, 'outer_cyclic': True, 'outer_equivalence': False, 'outer_exponent': 6, 'outer_gen_orders': [6], 'outer_gen_pows': [0], 'outer_gens': [[11, 108, 162]], 'outer_group': '6.2', 'outer_hash': 2, 'outer_nilpotent': True, 'outer_order': 6, 'outer_permdeg': 5, 'outer_perms': [28], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_6', 'pc_rank': 3, 'perfect': False, 'permutation_degree': 16, 'pgroup': 0, 'primary_abelian_invariants': [2, 9], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 2], [2, 3], [3, 2], [4, 1], [6, 5], [12, 2]], 'representations': {'PC': {'code': 8901171626819259671700697, 'gens': [1, 4, 5], 'pres': [6, -2, -3, -3, -2, 2, -3, 12, 43, 3027, 1305, 2704, 820, 88, 5189]}, 'GLZN': {'d': 2, 'p': 76, 'gens': [25382955, 439021, 21509873, 2745069, 661353, 17339591]}, 'Perm': {'d': 16, 'gens': [1, 174404534544, 91944960, 1313901388800, 2789705318400, 3]}}, 'schur_multiplier': [2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [18], 'solvability_type': 8, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'C_6^2.C_6', 'transitive_degree': 36, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '12.5', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 3, 'aut_exponent': 36, 'aut_gen_orders': [6, 18, 2, 6], 'aut_gens': [[1, 6, 108, 216], [37, 138, 756, 216], [49, 654, 756, 540], [649, 654, 108, 216], [1, 330, 108, 216]], 'aut_group': '1296.2922', 'aut_hash': 2922, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 1296, 'aut_permdeg': 21, 'aut_perms': [20468662326892277522, 9804819861952518880, 48806195934425707067, 50499856749283212477], 'aut_phi_ratio': 3.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 3, 1, 2], [2, 9, 1, 1], [2, 18, 1, 1], [2, 54, 1, 1], [3, 2, 1, 2], [3, 3, 1, 2], [3, 4, 1, 1], [3, 6, 1, 2], [4, 18, 1, 1], [4, 54, 1, 1], [6, 3, 1, 2], [6, 6, 1, 7], [6, 9, 1, 4], [6, 12, 1, 3], [6, 18, 1, 5], [6, 36, 1, 3], [6, 54, 1, 2], [9, 24, 1, 3], [9, 48, 1, 3], [12, 18, 1, 2], [12, 36, 1, 3], [12, 54, 1, 2], [18, 72, 1, 3]], 'aut_supersolvable': False, 'aut_tex': 'C_6^2.S_3^2', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 1, 'autcent_group': '1.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 1, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_1', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 36, 'autcentquo_group': '1296.2922', 'autcentquo_hash': 2922, 'autcentquo_nilpotent': False, 'autcentquo_order': 1296, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'C_6^2.S_3^2', 'cc_stats': [[1, 1, 1], [2, 3, 2], [2, 9, 1], [2, 18, 1], [2, 54, 1], [3, 2, 2], [3, 3, 2], [3, 4, 1], [3, 6, 2], [4, 18, 1], [4, 54, 1], [6, 3, 2], [6, 6, 7], [6, 9, 4], [6, 12, 3], [6, 18, 5], [6, 36, 3], [6, 54, 2], [9, 24, 3], [9, 48, 3], [12, 18, 2], [12, 36, 3], [12, 54, 2], [18, 72, 3]], 'center_label': '1.1', 'center_order': 1, 'central_product': True, 'central_quotient': '1296.2922', 'commutator_count': 1, 'commutator_label': '108.20', 'complements_known': True, 'complete': True, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '3.1', '3.1', '3.1', '3.1'], 'composition_length': 8, 'conjugacy_classes_known': True, 'counter': 2922, 'cyclic': False, 'derived_length': 3, 'dihedral': False, 'direct_factorization': [['216.90', 1], ['6.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 3, 1, 2], [2, 9, 1, 1], [2, 18, 1, 1], [2, 54, 1, 1], [3, 2, 1, 2], [3, 3, 2, 1], [3, 4, 1, 1], [3, 6, 2, 1], [4, 18, 1, 1], [4, 54, 1, 1], [6, 3, 2, 1], [6, 6, 1, 3], [6, 6, 2, 2], [6, 9, 2, 2], [6, 12, 1, 1], [6, 12, 2, 1], [6, 18, 1, 1], [6, 18, 2, 2], [6, 36, 1, 1], [6, 36, 2, 1], [6, 54, 2, 1], [9, 24, 1, 1], [9, 24, 2, 1], [9, 48, 1, 1], [9, 48, 2, 1], [12, 18, 2, 1], [12, 36, 1, 1], [12, 36, 2, 1], [12, 54, 2, 1], [18, 72, 1, 1], [18, 72, 2, 1]], 'element_repr_type': 'PC', 'elementary': 1, 'eulerian_function': 144, 'exponent': 36, 'exponents_of_order': [4, 4], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [[12, 0, 2], [12, 1, 1]], 'familial': False, 'frattini_label': '3.1', 'frattini_quotient': '432.745', 'hash': 2922, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 36, 'inner_gen_orders': [6, 18, 2, 6], 'inner_gens': [[1, 30, 756, 216], [85, 6, 756, 540], [649, 654, 108, 216], [1, 1194, 108, 216]], 'inner_hash': 2922, 'inner_nilpotent': False, 'inner_order': 1296, 'inner_split': True, 'inner_tex': 'C_6^2.S_3^2', 'inner_used': [1, 2, 3, 4], 'irrC_degree': 12, 'irrQ_degree': 12, 'irrQ_dim': 12, 'irrR_degree': 12, 'irrep_stats': [[1, 12], [2, 12], [3, 12], [4, 3], [6, 14], [12, 4]], 'label': '1296.2922', 'linC_count': 36, 'linC_degree': 8, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 8, 'linQ_degree_count': 4, 'linQ_dim': 8, 'linQ_dim_count': 4, 'linR_count': 4, 'linR_degree': 8, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': True, 'name': 'C6^2.S3^2', 'ngens': 8, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 57, 'number_characteristic_subgroups': 32, 'number_conjugacy_classes': 57, 'number_divisions': 39, 'number_normal_subgroups': 32, 'number_subgroup_autclasses': 286, 'number_subgroup_classes': 286, 'number_subgroups': 2648, 'old_label': None, 'order': 1296, 'order_factorization_type': 33, 'order_stats': [[1, 1], [2, 87], [3, 26], [4, 72], [6, 426], [9, 216], [12, 252], [18, 216]], 'outer_abelian': True, 'outer_cyclic': True, 'outer_equivalence': False, 'outer_exponent': 1, 'outer_gen_orders': [], 'outer_gen_pows': [], 'outer_gens': [], 'outer_group': '1.1', 'outer_hash': 1, 'outer_nilpotent': True, 'outer_order': 1, 'outer_permdeg': 1, 'outer_perms': [], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_1', 'pc_rank': 4, 'perfect': False, 'permutation_degree': 16, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 3], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 8], [3, 4], [4, 5], [6, 10], [8, 1], [12, 6], [24, 1]], 'representations': {'PC': {'code': 1992825520499251363212401964626711023176825985395168595289, 'gens': [1, 3, 6, 7], 'pres': [8, -2, -3, -2, -3, -3, -2, 2, -3, 16, 722, 514, 66, 1923, 1355, 123, 2884, 36293, 6069, 2621, 5062, 1542, 166, 9239]}, 'Perm': {'d': 16, 'gens': [3628800, 180583616250, 16427, 93405374717, 43545600, 99115, 1313901388800, 2789705318400]}}, 'schur_multiplier': [2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 6], 'solvability_type': 11, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'C_6^2.S_3^2', 'transitive_degree': 36, 'wreath_data': None, 'wreath_product': False}